Author: Michiel Hazewinkel
Publisher: American Mathematical Soc.
ISBN: 082185349X
Category : Mathematics
Languages : en
Pages : 603
Book Description
This book is a comprehensive treatment of the theory of formal groups and its numerous applications in several areas of mathematics. The seven chapters of the book present basics and main results of the theory, as well as very important applications in algebraic topology, number theory, and algebraic geometry. Each chapter ends with several pages of historical and bibliographic summary. One prerequisite for reading the book is an introductory graduate algebra course, including certain familiarity with category theory.
Formal Groups and Applications
Author: Michiel Hazewinkel
Publisher: American Mathematical Soc.
ISBN: 082185349X
Category : Mathematics
Languages : en
Pages : 603
Book Description
This book is a comprehensive treatment of the theory of formal groups and its numerous applications in several areas of mathematics. The seven chapters of the book present basics and main results of the theory, as well as very important applications in algebraic topology, number theory, and algebraic geometry. Each chapter ends with several pages of historical and bibliographic summary. One prerequisite for reading the book is an introductory graduate algebra course, including certain familiarity with category theory.
Publisher: American Mathematical Soc.
ISBN: 082185349X
Category : Mathematics
Languages : en
Pages : 603
Book Description
This book is a comprehensive treatment of the theory of formal groups and its numerous applications in several areas of mathematics. The seven chapters of the book present basics and main results of the theory, as well as very important applications in algebraic topology, number theory, and algebraic geometry. Each chapter ends with several pages of historical and bibliographic summary. One prerequisite for reading the book is an introductory graduate algebra course, including certain familiarity with category theory.
Introduction to the Theory of Formal Groups
Author: Jean A. Dieudonne
Publisher: CRC Press
ISBN: 1000723313
Category : Mathematics
Languages : en
Pages : 286
Book Description
The concept of formal Lie group was derived in a natural way from classical Lie theory by S. Bochner in 1946, for fields of characteristic 0. Its study over fields of characteristic p > 0 began in the early 1950’s, when it was realized, through the work of Chevalley, that the familiar “dictionary” between Lie groups and Lie algebras completely broke down for Lie algebras of algebraic groups over such a field. This volume, starts with the concept of C-group for any category C (with products and final object), but the author’s do not exploit it in its full generality. The book is meant to be introductory to the theory, and therefore the necessary background to its minimum possible level is minimised: no algebraic geometry and very little commutative algebra is required in chapters I to III, and the algebraic geometry used in chapter IV is limited to the Serre- Chevalley type (varieties over an algebraically closed field).
Publisher: CRC Press
ISBN: 1000723313
Category : Mathematics
Languages : en
Pages : 286
Book Description
The concept of formal Lie group was derived in a natural way from classical Lie theory by S. Bochner in 1946, for fields of characteristic 0. Its study over fields of characteristic p > 0 began in the early 1950’s, when it was realized, through the work of Chevalley, that the familiar “dictionary” between Lie groups and Lie algebras completely broke down for Lie algebras of algebraic groups over such a field. This volume, starts with the concept of C-group for any category C (with products and final object), but the author’s do not exploit it in its full generality. The book is meant to be introductory to the theory, and therefore the necessary background to its minimum possible level is minimised: no algebraic geometry and very little commutative algebra is required in chapters I to III, and the algebraic geometry used in chapter IV is limited to the Serre- Chevalley type (varieties over an algebraically closed field).
Introduction to the Theory of Formal Groups
Author: Jean A. Dieudonne
Publisher: CRC Press
ISBN: 1000715493
Category : Mathematics
Languages : en
Pages : 282
Book Description
The concept of formal Lie group was derived in a natural way from classical Lie theory by S. Bochner in 1946, for fields of characteristic 0. Its study over fields of characteristic p > 0 began in the early 1950’s, when it was realized, through the work of Chevalley, that the familiar “dictionary” between Lie groups and Lie algebras completely broke down for Lie algebras of algebraic groups over such a field. This volume, starts with the concept of C-group for any category C (with products and final object), but the author’s do not exploit it in its full generality. The book is meant to be introductory to the theory, and therefore the necessary background to its minimum possible level is minimised: no algebraic geometry and very little commutative algebra is required in chapters I to III, and the algebraic geometry used in chapter IV is limited to the Serre- Chevalley type (varieties over an algebraically closed field).
Publisher: CRC Press
ISBN: 1000715493
Category : Mathematics
Languages : en
Pages : 282
Book Description
The concept of formal Lie group was derived in a natural way from classical Lie theory by S. Bochner in 1946, for fields of characteristic 0. Its study over fields of characteristic p > 0 began in the early 1950’s, when it was realized, through the work of Chevalley, that the familiar “dictionary” between Lie groups and Lie algebras completely broke down for Lie algebras of algebraic groups over such a field. This volume, starts with the concept of C-group for any category C (with products and final object), but the author’s do not exploit it in its full generality. The book is meant to be introductory to the theory, and therefore the necessary background to its minimum possible level is minimised: no algebraic geometry and very little commutative algebra is required in chapters I to III, and the algebraic geometry used in chapter IV is limited to the Serre- Chevalley type (varieties over an algebraically closed field).
Model Theory and Topoi
Author: F. van Oystaeyen
Publisher:
ISBN: 9780387071459
Category : Associative algebras
Languages : en
Pages : 128
Book Description
Publisher:
ISBN: 9780387071459
Category : Associative algebras
Languages : en
Pages : 128
Book Description
Complex Cobordism and Stable Homotopy Groups of Spheres
Author: Douglas C. Ravenel
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Commutative Formal Groups
Author: M.P. Lazard
Publisher: Springer
ISBN: 3540374310
Category : Mathematics
Languages : en
Pages : 239
Book Description
Publisher: Springer
ISBN: 3540374310
Category : Mathematics
Languages : en
Pages : 239
Book Description
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9781556080036
Category : Mathematics
Languages : en
Pages : 540
Book Description
V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.
Publisher: Springer Science & Business Media
ISBN: 9781556080036
Category : Mathematics
Languages : en
Pages : 540
Book Description
V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.
Algebraic Geometry
Author: K. Lonsted
Publisher: Springer
ISBN: 3540350497
Category : Mathematics
Languages : en
Pages : 664
Book Description
Not long ago, conducting child assessment was as simple as stating that "the child gets along with others" or "the child lags behind his peers." Today's pediatric psychologists and allied professionals, by contrast, know the critical importance of using accurate measures with high predictive quality to identify pathologies early, form precise case conceptualizations, and provide relevant treatment options. Assessing Childhood Psychopathology and Developmental Disabilities provides a wide range of evidence-based methods in an immediately useful presentation from infancy through adolescence. Noted experts offer the most up-to-date findings in the most pressing areas, including: Emerging trends, new technologies, and implementation issues. Interviewing techniques and report writing guidelines. Intelligence testing, neuropsychological assessment, and scaling methods for measuring psychopathology. Assessment of major pathologies, including ADHD, conduct disorder, bipolar disorder, and depression. Developmental disabilities, such as academic problems, the autism spectrum and comorbid pathology, and self-injury. Behavioral medicine, including eating and feeding disorders as well as pain management. This comprehensive volume is an essential resource for the researcher's library and the clinician's desk as well as a dependable text for graduate and postgraduate courses in clinical child, developmental, and school psychology. (A companion volume, Treating Childhood Psychopathology and Developmental Disabilities, is also available to ensure greater continuity on the road from assessment to intervention to outcome.)
Publisher: Springer
ISBN: 3540350497
Category : Mathematics
Languages : en
Pages : 664
Book Description
Not long ago, conducting child assessment was as simple as stating that "the child gets along with others" or "the child lags behind his peers." Today's pediatric psychologists and allied professionals, by contrast, know the critical importance of using accurate measures with high predictive quality to identify pathologies early, form precise case conceptualizations, and provide relevant treatment options. Assessing Childhood Psychopathology and Developmental Disabilities provides a wide range of evidence-based methods in an immediately useful presentation from infancy through adolescence. Noted experts offer the most up-to-date findings in the most pressing areas, including: Emerging trends, new technologies, and implementation issues. Interviewing techniques and report writing guidelines. Intelligence testing, neuropsychological assessment, and scaling methods for measuring psychopathology. Assessment of major pathologies, including ADHD, conduct disorder, bipolar disorder, and depression. Developmental disabilities, such as academic problems, the autism spectrum and comorbid pathology, and self-injury. Behavioral medicine, including eating and feeding disorders as well as pain management. This comprehensive volume is an essential resource for the researcher's library and the clinician's desk as well as a dependable text for graduate and postgraduate courses in clinical child, developmental, and school psychology. (A companion volume, Treating Childhood Psychopathology and Developmental Disabilities, is also available to ensure greater continuity on the road from assessment to intervention to outcome.)
Elliptic Curves and Modular Forms in Algebraic Topology
Author: Peter S. Landweber
Publisher: Springer
ISBN: 3540393005
Category : Mathematics
Languages : en
Pages : 232
Book Description
A small conference was held in September 1986 to discuss new applications of elliptic functions and modular forms in algebraic topology, which had led to the introduction of elliptic genera and elliptic cohomology. The resulting papers range, fom these topics through to quantum field theory, with considerable attention to formal groups, homology and cohomology theories, and circle actions on spin manifolds. Ed. Witten's rich article on the index of the Dirac operator in loop space presents a mathematical treatment of his interpretation of elliptic genera in terms of quantum field theory. A short introductory article gives an account of the growth of this area prior to the conference.
Publisher: Springer
ISBN: 3540393005
Category : Mathematics
Languages : en
Pages : 232
Book Description
A small conference was held in September 1986 to discuss new applications of elliptic functions and modular forms in algebraic topology, which had led to the introduction of elliptic genera and elliptic cohomology. The resulting papers range, fom these topics through to quantum field theory, with considerable attention to formal groups, homology and cohomology theories, and circle actions on spin manifolds. Ed. Witten's rich article on the index of the Dirac operator in loop space presents a mathematical treatment of his interpretation of elliptic genera in terms of quantum field theory. A short introductory article gives an account of the growth of this area prior to the conference.
Encyclopaedia of Mathematics
Author: M. Hazewinkel
Publisher: Springer
ISBN: 1489937951
Category : Mathematics
Languages : en
Pages : 967
Book Description
Publisher: Springer
ISBN: 1489937951
Category : Mathematics
Languages : en
Pages : 967
Book Description