Unit Roots, Cointegration, and Structural Change PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Unit Roots, Cointegration, and Structural Change PDF full book. Access full book title Unit Roots, Cointegration, and Structural Change by G. S. Maddala. Download full books in PDF and EPUB format.

Unit Roots, Cointegration, and Structural Change

Unit Roots, Cointegration, and Structural Change PDF Author: G. S. Maddala
Publisher: Cambridge University Press
ISBN: 9780521587822
Category : Business & Economics
Languages : en
Pages : 528

Book Description
A comprehensive review of unit roots, cointegration and structural change from a best-selling author.

Unit Roots, Cointegration, and Structural Change

Unit Roots, Cointegration, and Structural Change PDF Author: G. S. Maddala
Publisher: Cambridge University Press
ISBN: 9780521587822
Category : Business & Economics
Languages : en
Pages : 528

Book Description
A comprehensive review of unit roots, cointegration and structural change from a best-selling author.

SAS for Forecasting Time Series, Third Edition

SAS for Forecasting Time Series, Third Edition PDF Author: John C. Brocklebank, Ph.D.
Publisher: SAS Institute
ISBN: 1629605441
Category : Computers
Languages : en
Pages : 616

Book Description
To use statistical methods and SAS applications to forecast the future values of data taken over time, you need only follow this thoroughly updated classic on the subject. With this third edition of SAS for Forecasting Time Series, intermediate-to-advanced SAS users—such as statisticians, economists, and data scientists—can now match the most sophisticated forecasting methods to the most current SAS applications. Starting with fundamentals, this new edition presents methods for modeling both univariate and multivariate data taken over time. From the well-known ARIMA models to unobserved components, methods that span the range from simple to complex are discussed and illustrated. Many of the newer methods are variations on the basic ARIMA structures. Completely updated, this new edition includes fresh, interesting business situations and data sets, and new sections on these up-to-date statistical methods: ARIMA models Vector autoregressive models Exponential smoothing models Unobserved component and state-space models Seasonal adjustment Spectral analysis Focusing on application, this guide teaches a wide range of forecasting techniques by example. The examples provide the statistical underpinnings necessary to put the methods into practice. The following up-to-date SAS applications are covered in this edition: The ARIMA procedure The AUTOREG procedure The VARMAX procedure The ESM procedure The UCM and SSM procedures The X13 procedure The SPECTRA procedure SAS Forecast Studio Each SAS application is presented with explanation of its strengths, weaknesses, and best uses. Even users of automated forecasting systems will benefit from this knowledge of what is done and why. Moreover, the accompanying examples can serve as templates that you easily adjust to fit your specific forecasting needs. This book is part of the SAS Press program.

Current Index to Statistics, Applications, Methods and Theory

Current Index to Statistics, Applications, Methods and Theory PDF Author:
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 676

Book Description
The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.

Time Series Analysis and Its Applications

Time Series Analysis and Its Applications PDF Author: Robert H. Shumway
Publisher:
ISBN: 9781475732627
Category :
Languages : en
Pages : 568

Book Description


Introduction to Statistical Time Series

Introduction to Statistical Time Series PDF Author: Wayne A. Fuller
Publisher: John Wiley & Sons
ISBN: 0470317752
Category : Mathematics
Languages : en
Pages : 734

Book Description
The subject of time series is of considerable interest, especiallyamong researchers in econometrics, engineering, and the naturalsciences. As part of the prestigious Wiley Series in Probabilityand Statistics, this book provides a lucid introduction to thefield and, in this new Second Edition, covers the importantadvances of recent years, including nonstationary models, nonlinearestimation, multivariate models, state space representations, andempirical model identification. New sections have also been addedon the Wold decomposition, partial autocorrelation, long memoryprocesses, and the Kalman filter. Major topics include: * Moving average and autoregressive processes * Introduction to Fourier analysis * Spectral theory and filtering * Large sample theory * Estimation of the mean and autocorrelations * Estimation of the spectrum * Parameter estimation * Regression, trend, and seasonality * Unit root and explosive time series To accommodate a wide variety of readers, review material,especially on elementary results in Fourier analysis, large samplestatistics, and difference equations, has been included.

Elements of Forecasting

Elements of Forecasting PDF Author: Francis X. Diebold
Publisher: South-Western Pub
ISBN: 9780324359046
Category : Business & Economics
Languages : en
Pages : 366

Book Description
ELEMENTARY FORECASTING focuses on the core techniques of widest applicability. The author illustrates all methods with detailed real-world applications, many of them international in flavor, designed to mimic typical forecasting situations.

Commodity Price Dynamics

Commodity Price Dynamics PDF Author: Craig Pirrong
Publisher: Cambridge University Press
ISBN: 1139501976
Category : Business & Economics
Languages : en
Pages : 239

Book Description
Commodities have become an important component of many investors' portfolios and the focus of much political controversy over the past decade. This book utilizes structural models to provide a better understanding of how commodities' prices behave and what drives them. It exploits differences across commodities and examines a variety of predictions of the models to identify where they work and where they fail. The findings of the analysis are useful to scholars, traders and policy makers who want to better understand often puzzling - and extreme - movements in the prices of commodities from aluminium to oil to soybeans to zinc.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Introduction to Time Series and Forecasting

Introduction to Time Series and Forecasting PDF Author: Peter J. Brockwell
Publisher: Springer Science & Business Media
ISBN: 1475725264
Category : Mathematics
Languages : en
Pages : 429

Book Description
Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.

A Non-Random Walk Down Wall Street

A Non-Random Walk Down Wall Street PDF Author: Andrew W. Lo
Publisher: Princeton University Press
ISBN: 1400829097
Category : Business & Economics
Languages : en
Pages : 449

Book Description
For over half a century, financial experts have regarded the movements of markets as a random walk--unpredictable meanderings akin to a drunkard's unsteady gait--and this hypothesis has become a cornerstone of modern financial economics and many investment strategies. Here Andrew W. Lo and A. Craig MacKinlay put the Random Walk Hypothesis to the test. In this volume, which elegantly integrates their most important articles, Lo and MacKinlay find that markets are not completely random after all, and that predictable components do exist in recent stock and bond returns. Their book provides a state-of-the-art account of the techniques for detecting predictabilities and evaluating their statistical and economic significance, and offers a tantalizing glimpse into the financial technologies of the future. The articles track the exciting course of Lo and MacKinlay's research on the predictability of stock prices from their early work on rejecting random walks in short-horizon returns to their analysis of long-term memory in stock market prices. A particular highlight is their now-famous inquiry into the pitfalls of "data-snooping biases" that have arisen from the widespread use of the same historical databases for discovering anomalies and developing seemingly profitable investment strategies. This book invites scholars to reconsider the Random Walk Hypothesis, and, by carefully documenting the presence of predictable components in the stock market, also directs investment professionals toward superior long-term investment returns through disciplined active investment management.