Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations PDF full book. Access full book title Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations by Gary Cohen. Download full books in PDF and EPUB format.

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations PDF Author: Gary Cohen
Publisher: Springer
ISBN: 9401777616
Category : Technology & Engineering
Languages : en
Pages : 393

Book Description
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem of its spurious-free approximations. Treatment of unbounded domains by Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML) is described and analyzed in a separate chapter. The two last chapters deal with time approximation including local time-stepping and with the study of some complex models, i.e. acoustics in flow, gravity waves and vibrating thin plates. Throughout, emphasis is put on the accuracy and computational efficiency of the methods, with attention brought to their practical aspects.This monograph also covers in details the theoretical foundations and numerical analysis of these methods. As a result, this monograph will be of interest to practitioners, researchers, engineers and graduate students involved in the numerical simulationof waves.

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations PDF Author: Gary Cohen
Publisher: Springer
ISBN: 9401777616
Category : Technology & Engineering
Languages : en
Pages : 393

Book Description
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem of its spurious-free approximations. Treatment of unbounded domains by Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML) is described and analyzed in a separate chapter. The two last chapters deal with time approximation including local time-stepping and with the study of some complex models, i.e. acoustics in flow, gravity waves and vibrating thin plates. Throughout, emphasis is put on the accuracy and computational efficiency of the methods, with attention brought to their practical aspects.This monograph also covers in details the theoretical foundations and numerical analysis of these methods. As a result, this monograph will be of interest to practitioners, researchers, engineers and graduate students involved in the numerical simulationof waves.

Direct and Inverse Problems in Wave Propagation and Applications

Direct and Inverse Problems in Wave Propagation and Applications PDF Author: Ivan Graham
Publisher: Walter de Gruyter
ISBN: 3110282283
Category : Mathematics
Languages : en
Pages : 328

Book Description
This book is the third volume of three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" taking place in Linz, Austria, October 3-7, 2011. This book surveys recent developments in the analysis of wave propagation problems. The topics covered include aspects of the forward problem and problems in inverse problems, as well as applications in the earth sciences. Wave propagation problems are ubiquitous in environmental applications such as seismic analysis, acoustic and electromagnetic scattering. The design of efficient numerical methods for the forward problem, in which the scattered field is computed from known geometric configurations is very challenging due to the multiscale nature of the problems. Even more challenging are inverse problems where material parameters and configurations have to be determined from measurements in conjunction with the forward problem. This book contains review articles covering several state-of-the-art numerical methods for both forward and inverse problems. This collection of survey articles focusses on the efficient computation of wave propagation and scattering is a core problem in numerical mathematics, which is currently of great research interest and is central to many applications in energy and the environment. Two generic applications which resonate strongly with the central aims of the Radon Special Semester 2011 are forward wave propagation in heterogeneous media and seismic inversion for subsurface imaging. As an example of the first application, modelling of absorption and scattering of radiation by clouds, aerosol and precipitation is used as a tool for interpretation of (e.g.) solar, infrared and radar measurements, and as a component in larger weather/climate prediction models in numerical weather forecasting. As an example of the second application, inverse problems in wave propagation in heterogeneous media arise in the problem of imaging the subsurface below land or marine deposits. The book records the achievements of Workshop 3 "Wave Propagation and Scattering, Inverse Problems and Applications in Energy and the Environment". It brings together key numerical mathematicians whose interest is in the analysis and computation of wave propagation and scattering problems, and in inverse problems, together with practitioners from engineering and industry whose interest is in the applications of these core problems.

The Finite Element Method

The Finite Element Method PDF Author: Patrick Ciarlet
Publisher: John Wiley & Sons
ISBN: 1786307685
Category : Mathematics
Languages : en
Pages : 404

Book Description
The finite element method, which emerged in the 1950s to deal with structural mechanics problems, has since undergone continuous development. Using partial differential equation models, it is now present in such fields of application as mechanics, physics, chemistry, economics, finance and biology. It is also used in most scientific computing software, and many engineers become adept at using it in their modeling and numerical simulation activities. This book presents all the essential elements of the finite element method in a progressive and didactic way: the theoretical foundations, practical considerations of implementation, algorithms, as well as numerical illustrations created in MATLAB. Original exercises with detailed answers are provided at the end of each chapter.

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials PDF Author: Jichun Li
Publisher: Springer Science & Business Media
ISBN: 3642337899
Category : Computers
Languages : en
Pages : 309

Book Description
The purpose of this book is to provide an up-to-date introduction to the time-domain finite element methods for Maxwell’s equations involving metamaterials. Since the first successful construction of a metamaterial with both negative permittivity and permeability in 2000, the study of metamaterials has attracted significant attention from researchers across many disciplines. Thanks to enormous efforts on the part of engineers and physicists, metamaterials present great potential applications in antenna and radar design, sub-wavelength imaging, and invisibility cloak design. Hence the efficient simulation of electromagnetic phenomena in metamaterials has become a very important issue and is the subject of this book, in which various metamaterial modeling equations are introduced and justified mathematically. The development and practical implementation of edge finite element methods for metamaterial Maxwell’s equations are the main focus of the book. The book finishes with some interesting simulations such as backward wave propagation and time-domain cloaking with metamaterials.

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods PDF Author: Steffen Marburg
Publisher: Springer Science & Business Media
ISBN: 3540774483
Category : Science
Languages : en
Pages : 584

Book Description
The book provides a survey of numerical methods for acoustics, namely the finite element method (FEM) and the boundary element method (BEM). It is the first book summarizing FEM and BEM (and optimization) for acoustics. The book shows that both methods can be effectively used for many other cases, FEM even for open domains and BEM for closed ones. Emphasis of the book is put on numerical aspects and on treatment of the exterior problem in acoustics, i.e. noise radiation.

Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012

Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012 PDF Author: Mejdi Azaïez
Publisher: Springer Science & Business Media
ISBN: 3319016016
Category : Mathematics
Languages : en
Pages : 421

Book Description
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2012), and provides an overview of the depth and breath of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography. ​

The Finite Element Method Set

The Finite Element Method Set PDF Author: O. C. Zienkiewicz
Publisher: Elsevier
ISBN: 0080531679
Category : Technology & Engineering
Languages : en
Pages : 1863

Book Description
The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference

The Finite Element Method for Fluid Dynamics

The Finite Element Method for Fluid Dynamics PDF Author: O. C. Zienkiewicz
Publisher: Elsevier
ISBN: 008045559X
Category : Mathematics
Languages : en
Pages : 457

Book Description
Dealing with general problems in fluid mechanics, convection diffusion, compressible and incompressible laminar and turbulent flow, shallow water flows and waves, this is the leading text and reference for engineers working with fluid dynamics in fields including aerospace engineering, vehicle design, thermal engineering and many other engineering applications. The new edition is a complete fluids text and reference in its own right. Along with its companion volumes it forms part of the indispensable Finite Element Method series.New material in this edition includes sub-grid scale modelling; artificial compressibility; full new chapters on turbulent flows, free surface flows and porous medium flows; expanded shallow water flows plus long, medium and short waves; and advances in parallel computing. - A complete, stand-alone reference on fluid mechanics applications of the FEM for mechanical, aeronautical, automotive, marine, chemical and civil engineers. - Extensive new coverage of turbulent flow and free surface treatments

Seismic Waves

Seismic Waves PDF Author: Masaki Kanao
Publisher: BoD – Books on Demand
ISBN: 1789853273
Category : Science
Languages : en
Pages : 121

Book Description
The importance of seismic wave research lies not only in our ability to understand and predict earthquakes and tsunamis, but it also reveals information on the Earth's composition and features in much the same way as it led to the discovery of Mohorovicic's discontinuity. As our theoretical understanding of the physics behind seismic waves has grown, physical and numerical modeling have greatly advanced and now augment applied seismology for better prediction and engineering practices. This book demonstrates the latest techniques and advances in seismic wave analysis from a theoretical approach, data acquisition and interpretation, to analyses and numerical simulations, as well as research applications. The major topics in this book cover aspects on seismic wave propagation, characteristics of their velocities and attenuation, deformation process of the Earth's medium, seismic source process and tectonic dynamics with relating observations, as well as propagation modeling of seismic waves.

Isogeometric Analysis

Isogeometric Analysis PDF Author: J. Austin Cottrell
Publisher: John Wiley & Sons
ISBN: 0470749091
Category : Technology & Engineering
Languages : en
Pages : 352

Book Description
“The authors are the originators of isogeometric analysis, are excellent scientists and good educators. It is very original. There is no other book on this topic.” —René de Borst, Eindhoven University of Technology Written by leading experts in the field and featuring fully integrated colour throughout, Isogeometric Analysis provides a groundbreaking solution for the integration of CAD and FEA technologies. Tom Hughes and his researchers, Austin Cottrell and Yuri Bazilevs, present their pioneering isogeometric approach, which aims to integrate the two techniques of CAD and FEA using precise NURBS geometry in the FEA application. This technology offers the potential to revolutionise automobile, ship and airplane design and analysis by allowing models to be designed, tested and adjusted in one integrative stage. Providing a systematic approach to the topic, the authors begin with a tutorial introducing the foundations of Isogeometric Analysis, before advancing to a comprehensive coverage of the most recent developments in the technique. The authors offer a clear explanation as to how to add isogeometric capabilities to existing finite element computer programs, demonstrating how to implement and use the technology. Detailed programming examples and datasets are included to impart a thorough knowledge and understanding of the material. Provides examples of different applications, showing the reader how to implement isogeometric models Addresses readers on both sides of the CAD/FEA divide Describes Non-Uniform Rational B-Splines (NURBS) basis functions