Film Stabilizaiton and Photophysics of Unconventional Conjugated Polymers PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Film Stabilizaiton and Photophysics of Unconventional Conjugated Polymers PDF full book. Access full book title Film Stabilizaiton and Photophysics of Unconventional Conjugated Polymers by Kara Martin. Download full books in PDF and EPUB format.

Film Stabilizaiton and Photophysics of Unconventional Conjugated Polymers

Film Stabilizaiton and Photophysics of Unconventional Conjugated Polymers PDF Author: Kara Martin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Conjugated polymers offer a unique opportunity to develop high performing, flexible, lightweight, and large area electronic devices. With advances in conjugated polymer understanding and synthesis, the use of polymers as active layer materials in electronic applications, rather than just substrate materials, has become more promising. However, defects in morphological stability, as well as imperfect electronic understanding, are still present, limiting the use of these materials in commercializable electronics. Fundamental understanding of structure-property relationships can allow for facile synthetic solutions to major drawbacks of conjugated polymer integration in standard device architectures. Chapter 1 presents background research on the history of conjugated polymer development and the electronic device architectures these materials are typically incorporated in. Chapter 2 presents the use of thiol-ene chemistry to stabilize poly(3-alkylthiophene) films through a grafting-to procedure. This offers a simple way to produce highly oriented, insoluble, semi-conducting films through facile synthetic tuning of the polymers end-groups and side chains. In Chapter 3, the photophysics of carborane containing poly(dihexylfluorene) polymers is discussed. These unique class of materials experience drastic solvatochromism making them highly coveted for simple sensing applications. Through extensive spectroscopic investigations, a complete understanding of the excited-state dynamics is presented. Chapter 4 extends on Chapter 3 by demonstrating a straightforward method to synthesize carborane containing poly(dihexylfluorene)s with emissive properties that change with fluorene conjugation length, allowing for emission color tuning of the polymer solid and solution states. Lastly, Chapter 5 presents the synthesis of novel poly(bisthienyl carborane) and poly(bisthienyl carborane-alt-thiophene) is presented. This is the first example of a soluble conjugated polymer implementing a strong donor aromatic group and a strong acceptor carborane junction in the repeat unit. The fascinating excited-state characteristics are determined through femtosecond and nanosecond spectroscopy, showing the polymer can promote triplet formation on the carborane unit, making it useful for triplet sensitization applications. The work presented in this thesis shows that straightforward synthetic techniques can be used to highly affect the properties of common conjugated polymers, making them more robust or beneficial for electronic applications. Side-chain and backbone engineering is a necessary technique for furthering the development of useful and applicable "plastic" electronics.

Film Stabilizaiton and Photophysics of Unconventional Conjugated Polymers

Film Stabilizaiton and Photophysics of Unconventional Conjugated Polymers PDF Author: Kara Martin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Conjugated polymers offer a unique opportunity to develop high performing, flexible, lightweight, and large area electronic devices. With advances in conjugated polymer understanding and synthesis, the use of polymers as active layer materials in electronic applications, rather than just substrate materials, has become more promising. However, defects in morphological stability, as well as imperfect electronic understanding, are still present, limiting the use of these materials in commercializable electronics. Fundamental understanding of structure-property relationships can allow for facile synthetic solutions to major drawbacks of conjugated polymer integration in standard device architectures. Chapter 1 presents background research on the history of conjugated polymer development and the electronic device architectures these materials are typically incorporated in. Chapter 2 presents the use of thiol-ene chemistry to stabilize poly(3-alkylthiophene) films through a grafting-to procedure. This offers a simple way to produce highly oriented, insoluble, semi-conducting films through facile synthetic tuning of the polymers end-groups and side chains. In Chapter 3, the photophysics of carborane containing poly(dihexylfluorene) polymers is discussed. These unique class of materials experience drastic solvatochromism making them highly coveted for simple sensing applications. Through extensive spectroscopic investigations, a complete understanding of the excited-state dynamics is presented. Chapter 4 extends on Chapter 3 by demonstrating a straightforward method to synthesize carborane containing poly(dihexylfluorene)s with emissive properties that change with fluorene conjugation length, allowing for emission color tuning of the polymer solid and solution states. Lastly, Chapter 5 presents the synthesis of novel poly(bisthienyl carborane) and poly(bisthienyl carborane-alt-thiophene) is presented. This is the first example of a soluble conjugated polymer implementing a strong donor aromatic group and a strong acceptor carborane junction in the repeat unit. The fascinating excited-state characteristics are determined through femtosecond and nanosecond spectroscopy, showing the polymer can promote triplet formation on the carborane unit, making it useful for triplet sensitization applications. The work presented in this thesis shows that straightforward synthetic techniques can be used to highly affect the properties of common conjugated polymers, making them more robust or beneficial for electronic applications. Side-chain and backbone engineering is a necessary technique for furthering the development of useful and applicable "plastic" electronics.

Photophysics of Conjugated Polymers

Photophysics of Conjugated Polymers PDF Author: Tieneke Emily Dykstra
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Photochemistry and Photophysics of Polymeric Materials

Photochemistry and Photophysics of Polymeric Materials PDF Author: Norman S. Allen
Publisher: Wiley
ISBN: 0470594160
Category : Technology & Engineering
Languages : en
Pages : 600

Book Description
Presents the state of the technology, from fundamentals to new materials and applications Today's electronic devices, computers, solar cells, printing, imaging, copying, and recording technology, to name a few, all owe a debt to our growing understanding of the photophysics and photochemistry of polymeric materials. This book draws together, analyzes, and presents our current understanding of polymer photochemistry and photophysics. In addition to exploring materials, mechanisms, processes, and properties, the handbook also highlights the latest applications in the field and points to new developments on the horizon. Photochemistry and Photophysics of Polymer Materials is divided into seventeen chapters, including: Optical and luminescent properties and applications of metal complex-based polymers Photoinitiators for free radical polymerization reactions Photovoltaic polymer materials Photoimaging and lithographic processes in polymers Photostabilization of polymer materials Photodegradation processes in polymeric materials Each chapter, written by one or more leading experts and pioneers in the field, incorporates all the latest findings and developments as well as the authors' own personal insights and perspectives. References guide readers to the literature for further investigation of individual topics. Together, the contributions represent a series of major developments in the polymer world in which light and its energy have been put to valuable use. Not only does this reference capture our current state of knowledge, but it also provides the foundation for new research and the development of new materials and new applications.

Photophysics of Long-lived Excitations in Pi-conjugated Polymer Films and Devices

Photophysics of Long-lived Excitations in Pi-conjugated Polymer Films and Devices PDF Author: Markus Wohlgenannt
Publisher:
ISBN:
Category : Polymers
Languages : en
Pages : 218

Book Description


Investigating the Photochemistry and Photophysics of Conjugated Polymers by Single Molecule Spectroscopy

Investigating the Photochemistry and Photophysics of Conjugated Polymers by Single Molecule Spectroscopy PDF Author: Dehong Hu
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Book Description


Conjugated Polymers

Conjugated Polymers PDF Author: Terje A. Skotheim
Publisher: CRC Press
ISBN: 1420043595
Category : Technology & Engineering
Languages : en
Pages : 1030

Book Description
Many significant fundamental concepts and practical applications have developed since the publication of the best-selling second edition of the Handbook of Conducting Polymers. Now divided into two books, the third edition continues to retain the excellent expertise of the editors and world-renowned contributors while providing superior coverage of

Long-lived Photophysics of Conjugated Polymers

Long-lived Photophysics of Conjugated Polymers PDF Author: Christine Marie Liberatore Cuppoletti
Publisher:
ISBN:
Category :
Languages : en
Pages : 218

Book Description


Photophysics of Conjugated Polymers and Oligomers

Photophysics of Conjugated Polymers and Oligomers PDF Author: Kurt Justin Baldwin
Publisher:
ISBN:
Category :
Languages : en
Pages : 408

Book Description


Resolving Puzzles in Conjugated Polymer Photophysics

Resolving Puzzles in Conjugated Polymer Photophysics PDF Author: Chakraborty Rajarshi
Publisher:
ISBN:
Category :
Languages : en
Pages : 129

Book Description
"Conjugated polymers are active candidates of research for their potential applications in organic electronic devices. This thesis contains experimental results of the photophysical behaviour of Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) in the nanoseconds timescale. It is generally accepted that quantum yield of films are less than their solution counterparts and has a non-exponential "temporal tail" in the decay dynamics. This thesis reports the spectroscopy, excitation wavelength dependence, temperature dependence and electric field quenching of the temporal tail of the photoluminescence in MEH-PPV on a nanosecond timescale. We try to understand if a correlation exists between the "temporal tail" and quantum yield in films. We conclude that the tail represents emission from H-like aggregated regions in the polymer. Using a simple model of the photophysics, we estimate the formation yield of the aggregates responsible for the tail emission and conclude that they cannot account for the large reduction in fluorescence observed in densely packed films relative to that in solution. If recombination of injected charges in an OLED follows quantum spin statistics and all recombination forms the lowest excited states in a spin manifold, then the ratio of formed singlet to triplet exciton would be 1:3 setting an efficiency limit of 25% to the EL emission. However, in conjugated polymers, various studies have reported the formation ratio of singlet to triplet excitons to be greater than 1:3. These results have ambiguity due to issues of magnetoresistance, TTA, charge trapping, outcoupling etc. We try to reexamine the singlet-triplet branching ratio in Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt- (benzo [2,1,3] thiadiazol-4,8-diyl) (F8BT) along with MEH-PPV with the hope of circumventing these problems. This approach involves simultaneous detection of singlet and triplet state luminescence and then estimate the recombination branching ratios directly from the change in singlet and triplet signals produced by applying magnetic fields. The role of PP in F8BT films are addressed based on studying the effect of external magnetic field on the DF and triplet signals of gold nanoparticle doped films. This work is unique and important because it includes a delay dependent magnetic field effect study of the DF suggesting that spin randomization of charge pairs is a fast process that occurs on the several hundred nanoseconds time scale. The magnetic field effect on the fluorescence persists to tens of microseconds and we argue that this apparent inconsistency implies the existence of an intermediate state in the recombination process that has implications for measurements and theoretical treatments of the singlet recombination fraction in electroluminescent conjugated polymers."--Pages ix-x.

Enhanced Photophysics of Conjugated Polymers

Enhanced Photophysics of Conjugated Polymers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The addition of oppositely charged surfactant to fluorescent ionic conjugated polymer forms a polymer-surfactant complex that exhibits at least one improved photophysical property. The conjugated polymer is a fluorescent ionic polymer that typically has at least one ionic side chain or moiety that interacts with the specific surfactant selected. The photophysical property improvements may include increased fluorescence quantum efficiency, wavelength-independent emission and absorption spectra, and more stable fluorescence decay kinetics. The complexation typically occurs in a solution of a polar solvent in which the polymer and surfactant are soluble, but it may also occur in a mixture of solvents. The solution is commonly prepared with a surfactant molecule:monomer repeat unit of polymer ratio ranging from about 1:100 to about 1:1. A polymer-surfactant complex precipitate is formed as the ratio approaches 1:1. This precipitate is recoverable and usable in many forms.