Author: National Research Council
Publisher: National Academies Press
ISBN: 0309108349
Category : Science
Languages : en
Pages : 395
Book Description
The generation of electricity by wind energy has the potential to reduce environmental impacts caused by the use of fossil fuels. Although the use of wind energy to generate electricity is increasing rapidly in the United States, government guidance to help communities and developers evaluate and plan proposed wind-energy projects is lacking. Environmental Impacts of Wind-Energy Projects offers an analysis of the environmental benefits and drawbacks of wind energy, along with an evaluation guide to aid decision-making about projects. It includes a case study of the mid-Atlantic highlands, a mountainous area that spans parts of West Virginia, Virginia, Maryland, and Pennsylvania. This book will inform policy makers at the federal, state, and local levels.
Environmental Impacts of Wind-Energy Projects
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309108349
Category : Science
Languages : en
Pages : 395
Book Description
The generation of electricity by wind energy has the potential to reduce environmental impacts caused by the use of fossil fuels. Although the use of wind energy to generate electricity is increasing rapidly in the United States, government guidance to help communities and developers evaluate and plan proposed wind-energy projects is lacking. Environmental Impacts of Wind-Energy Projects offers an analysis of the environmental benefits and drawbacks of wind energy, along with an evaluation guide to aid decision-making about projects. It includes a case study of the mid-Atlantic highlands, a mountainous area that spans parts of West Virginia, Virginia, Maryland, and Pennsylvania. This book will inform policy makers at the federal, state, and local levels.
Publisher: National Academies Press
ISBN: 0309108349
Category : Science
Languages : en
Pages : 395
Book Description
The generation of electricity by wind energy has the potential to reduce environmental impacts caused by the use of fossil fuels. Although the use of wind energy to generate electricity is increasing rapidly in the United States, government guidance to help communities and developers evaluate and plan proposed wind-energy projects is lacking. Environmental Impacts of Wind-Energy Projects offers an analysis of the environmental benefits and drawbacks of wind energy, along with an evaluation guide to aid decision-making about projects. It includes a case study of the mid-Atlantic highlands, a mountainous area that spans parts of West Virginia, Virginia, Maryland, and Pennsylvania. This book will inform policy makers at the federal, state, and local levels.
Summary Report - Federal Wind Energy Program
Author: United States. Energy Research and Development Administration
Publisher:
ISBN:
Category : Wind power
Languages : en
Pages : 64
Book Description
Publisher:
ISBN:
Category : Wind power
Languages : en
Pages : 64
Book Description
Wind Energy Program
Author: United States. Congress. House. Committee on Science and Technology. Subcommittee on Energy Development and Applications
Publisher:
ISBN:
Category : Energy policy
Languages : en
Pages : 196
Book Description
Publisher:
ISBN:
Category : Energy policy
Languages : en
Pages : 196
Book Description
Renewable Energy and Wildlife Conservation
Author: Christopher E. Moorman
Publisher: JHU Press
ISBN: 1421432730
Category : Science
Languages : en
Pages : 279
Book Description
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
Publisher: JHU Press
ISBN: 1421432730
Category : Science
Languages : en
Pages : 279
Book Description
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
Wind Vision
Author: U. S. Department U.S. Department of Energy
Publisher: CreateSpace
ISBN: 9781508860549
Category :
Languages : en
Pages : 46
Book Description
This book provides a detailed roadmap of technical, economic, and institutional actions by the wind industry, the wind research community, and others to optimize wind's potential contribution to a cleaner, more reliable, low-carbon, domestic energy generation portfolio, utilizing U.S. manu-facturing and a U.S. workforce. The roadmap is intended to be the beginning of an evolving, collaborative, and necessarily dynamic process. It thus suggests an approach of continual updates at least every two years, informed by its analysis activities. Roadmap actions are identified in nine topical areas, introduced below.
Publisher: CreateSpace
ISBN: 9781508860549
Category :
Languages : en
Pages : 46
Book Description
This book provides a detailed roadmap of technical, economic, and institutional actions by the wind industry, the wind research community, and others to optimize wind's potential contribution to a cleaner, more reliable, low-carbon, domestic energy generation portfolio, utilizing U.S. manu-facturing and a U.S. workforce. The roadmap is intended to be the beginning of an evolving, collaborative, and necessarily dynamic process. It thus suggests an approach of continual updates at least every two years, informed by its analysis activities. Roadmap actions are identified in nine topical areas, introduced below.
Future of wind
Author: International Renewable Energy Agency IRENA
Publisher: International Renewable Energy Agency (IRENA)
ISBN: 9292601970
Category : Technology & Engineering
Languages : en
Pages : 161
Book Description
This study presents options to speed up the deployment of wind power, both onshore and offshore, until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.
Publisher: International Renewable Energy Agency (IRENA)
ISBN: 9292601970
Category : Technology & Engineering
Languages : en
Pages : 161
Book Description
This study presents options to speed up the deployment of wind power, both onshore and offshore, until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.
Wind Energy Explained
Author: James F. Manwell
Publisher: John Wiley & Sons
ISBN: 9780470686287
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)
Publisher: John Wiley & Sons
ISBN: 9780470686287
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)
Wind Energy
Wind Energy Technical Information Guide
Airborne Wind Energy
Author: Roland Schmehl
Publisher: Springer
ISBN: 9811019479
Category : Technology & Engineering
Languages : en
Pages : 752
Book Description
This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.
Publisher: Springer
ISBN: 9811019479
Category : Technology & Engineering
Languages : en
Pages : 752
Book Description
This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.