Getting started with FastApi PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Getting started with FastApi PDF full book. Access full book title Getting started with FastApi by Andrés Cruz Yoris. Download full books in PDF and EPUB format.

Getting started with FastApi

Getting started with FastApi PDF Author: Andrés Cruz Yoris
Publisher: Andres Cruz
ISBN:
Category : Computers
Languages : en
Pages : 168

Book Description
FastAPI is a great web framework for creating web APIs with Python; It offers us multiple features with which it is possible to create modular, well-structured, scalable APIs with many options such as validations, formats, typing, among others. When you install FastAPI, two very important modules are installed: Pydantic that allows the creation of models for data validation. Starlette, which is a lightweight ASGI tooltip, used to create asynchronous (or synchronous) web services in Python. With these packages, we have the basics to create APIs, but we can easily extend a FastAPI project with other modules to provide the application with more features, such as the database, template engines, among others. FastAPI is a high-performance, easy-to-learn, start-up framework; It is ideal for creating all kinds of sites that not only consist of APIs, but we can install a template manager to return complete web pages. This book is mostly practical, we will learn the basics of FastAPI, knowing its main features based on a small application that we will extend chapter after chapter and whose content you can see below: Chapter 1: We present some essential commands to develop in FastApi , we will prepare the environment and we will give an introduction to the framework . Chapter 2: One of the main factors in FastApi is the creation of resources for the API through functions, in this section we will deal with the basics of this, introducing routing between multiple files as well as the different options for the arguments and parameters of these routes. Chapter 3: In this section, learn how to handle HTTP status codes from API methods and also handle errors/exceptions from API methods. Chapter 4: In this section we will see how to create sample data to use from the automatic documentation that FastAPI offers for each of the API methods. Chapter 5: In this chapter we will see how to implement the upload of files, knowing the different existing variants in FastAPI. Chapter 6: In this chapter we will see how to connect a FastAPI application to a relational database such as MySQL. Chapter 7: In this chapter we will see installing and using a template engine in Python, specifically Jinja, with which we can return responses in HTML format. Chapter 8: In this chapter we will see installing and using a template engine in Python, specifically Jinja, with which we can return responses in HTML format. Chapter 9: In this chapter we will learn how to use dependencies. Chapter 10: In this chapter we will see how to use middleware to intercept requests to API methods and execute some procedure before the request or after generating the response. Chapter 11: In this chapter we will see how to create a user module, to register users, login, generate access tokens and logout. Chapter 12: In this chapter we will learn about some particularities and functionalities of FastAPI such as the use of annotations and the Ellipsis operator. Chapter 13: In this chapter we will see how to implement unit tests. Chapter 14: In this chapter we will know some general aspects applied to FastAPI.

Getting started with FastApi

Getting started with FastApi PDF Author: Andrés Cruz Yoris
Publisher: Andres Cruz
ISBN:
Category : Computers
Languages : en
Pages : 168

Book Description
FastAPI is a great web framework for creating web APIs with Python; It offers us multiple features with which it is possible to create modular, well-structured, scalable APIs with many options such as validations, formats, typing, among others. When you install FastAPI, two very important modules are installed: Pydantic that allows the creation of models for data validation. Starlette, which is a lightweight ASGI tooltip, used to create asynchronous (or synchronous) web services in Python. With these packages, we have the basics to create APIs, but we can easily extend a FastAPI project with other modules to provide the application with more features, such as the database, template engines, among others. FastAPI is a high-performance, easy-to-learn, start-up framework; It is ideal for creating all kinds of sites that not only consist of APIs, but we can install a template manager to return complete web pages. This book is mostly practical, we will learn the basics of FastAPI, knowing its main features based on a small application that we will extend chapter after chapter and whose content you can see below: Chapter 1: We present some essential commands to develop in FastApi , we will prepare the environment and we will give an introduction to the framework . Chapter 2: One of the main factors in FastApi is the creation of resources for the API through functions, in this section we will deal with the basics of this, introducing routing between multiple files as well as the different options for the arguments and parameters of these routes. Chapter 3: In this section, learn how to handle HTTP status codes from API methods and also handle errors/exceptions from API methods. Chapter 4: In this section we will see how to create sample data to use from the automatic documentation that FastAPI offers for each of the API methods. Chapter 5: In this chapter we will see how to implement the upload of files, knowing the different existing variants in FastAPI. Chapter 6: In this chapter we will see how to connect a FastAPI application to a relational database such as MySQL. Chapter 7: In this chapter we will see installing and using a template engine in Python, specifically Jinja, with which we can return responses in HTML format. Chapter 8: In this chapter we will see installing and using a template engine in Python, specifically Jinja, with which we can return responses in HTML format. Chapter 9: In this chapter we will learn how to use dependencies. Chapter 10: In this chapter we will see how to use middleware to intercept requests to API methods and execute some procedure before the request or after generating the response. Chapter 11: In this chapter we will see how to create a user module, to register users, login, generate access tokens and logout. Chapter 12: In this chapter we will learn about some particularities and functionalities of FastAPI such as the use of annotations and the Ellipsis operator. Chapter 13: In this chapter we will see how to implement unit tests. Chapter 14: In this chapter we will know some general aspects applied to FastAPI.

Building Python Web APIs with FastAPI

Building Python Web APIs with FastAPI PDF Author: Abdulazeez Abdulazeez Adeshina
Publisher: Packt Publishing Ltd
ISBN: 1801074518
Category : Computers
Languages : en
Pages : 216

Book Description
Discover FastAPI features and best practices for building and deploying high-quality web APIs from scratch Key Features • A practical guide to developing production-ready web APIs rapidly in Python • Learn how to put FastAPI into practice by implementing it in real-world scenarios • Explore FastAPI, its syntax, and configurations for deploying applications Book Description RESTful web services are commonly used to create APIs for web-based applications owing to their light weight and high scalability. This book will show you how FastAPI, a high-performance web framework for building RESTful APIs in Python, allows you to build robust web APIs that are simple and intuitive and makes it easy to build quickly with very little boilerplate code. This book will help you set up a FastAPI application in no time and show you how to use FastAPI to build a REST API that receives and responds to user requests. You'll go on to learn how to handle routing and authentication while working with databases in a FastAPI application. The book walks you through the four key areas: building and using routes for create, read, update, and delete (CRUD) operations; connecting the application to SQL and NoSQL databases; securing the application built; and deploying your application locally or to a cloud environment. By the end of this book, you'll have developed a solid understanding of the FastAPI framework and be able to build and deploy robust REST APIs. What you will learn • Set up a FastAPI application that is fully functional and secure • Understand how to handle errors from requests and send proper responses in FastAPI • Integrate and connect your application to a SQL and NoSQL (MongoDB) database • Perform CRUD operations using SQL and FastAPI • Manage concurrency in FastAPI applications • Implement authentication in a FastAPI application • Deploy a FastAPI application to any platform Who this book is for This book is for Python developers who want to learn FastAPI in a pragmatic way to create robust web APIs with ease. If you are a Django or Flask developer looking to try something new that's faster, more efficient, and produces fewer bugs, this FastAPI Python book is for you. The book assumes intermediate-level knowledge of Python programming.

Microservice APIs

Microservice APIs PDF Author: Jose Haro Peralta
Publisher: Simon and Schuster
ISBN: 1638350566
Category : Computers
Languages : en
Pages : 438

Book Description
Strategies, best practices, and patterns that will help you design resilient microservices architecture and streamline your API integrations. In Microservice APIs, you’ll discover: Service decomposition strategies for microservices Documentation-driven development for APIs Best practices for designing REST and GraphQL APIs Documenting REST APIs with the OpenAPI specification (formerly Swagger) Documenting GraphQL APIs using the Schema Definition Language Building microservices APIs with Flask, FastAPI, Ariadne, and other frameworks Service implementation patterns for loosely coupled services Property-based testing to validate your APIs, and using automated API testing frameworks like schemathesis and Dredd Adding authentication and authorization to your microservice APIs using OAuth and OpenID Connect (OIDC) Deploying and operating microservices in AWS with Docker and Kubernetes Microservice APIs teaches you practical techniques for designing robust microservices with APIs that are easy to understand, consume, and maintain. You’ll benefit from author José Haro Peralta’s years of experience experimenting with microservices architecture, dodging pitfalls and learning from mistakes he’s made. Inside you’ll find strategies for delivering successful API integrations, implementing services with clear boundaries, managing cloud deployments, and handling microservices security. Written in a framework-agnostic manner, its universal principles can easily be applied to your favorite stack and toolset. About the technology Clean, clear APIs are essential to the success of microservice applications. Well-designed APIs enable reliable integrations between services and help simplify maintenance, scaling, and redesigns. Th is book teaches you the patterns, protocols, and strategies you need to design, build, and deploy effective REST and GraphQL microservices APIs. About the book Microservice APIs gathers proven techniques for creating and building easy-to-consume APIs for microservices applications. Rich with proven advice and Python-based examples, this practical book focuses on implementation over philosophy. You’ll learn how to build robust microservice APIs, test and protect them, and deploy them to the cloud following principles and patterns that work in any language. What's inside Service decomposition strategies for microservices Best practices for designing and building REST and GraphQL APIs Service implementation patterns for loosely coupled components API authorization with OAuth and OIDC Deployments with AWS and Kubernetes About the reader For developers familiar with the basics of web development. Examples are in Python. About the author José Haro Peralta is a consultant, author, and instructor. He’s also the founder of microapis.io. Table of Contents PART 1 INTRODUCING MICROSERVICE APIS 1 What are microservice APIs? 2 A basic API implementation 3 Designing microservices PART 2 DESIGNING AND BUILDING REST APIS 4 Principles of REST API design 5 Documenting REST APIs with OpenAPI 6 Building REST APIs with Python 7 Service implementation patterns for microservices PART 3 DESIGNING AND BUILDING GRAPHQL APIS 8 Designing GraphQL APIs 9 Consuming GraphQL APIs 10 Building GraphQL APIs with Python PART 4 SECURING, TESTING, AND DEPLOYING MICROSERVICE APIS 11 API authorization and authentication 12 Testing and validating APIs 13 Dockerizing microservice APIs 14 Deploying microservice APIs with Kubernetes

Python APIs

Python APIs PDF Author: Robert Johnson
Publisher: HiTeX Press
ISBN:
Category : Computers
Languages : en
Pages : 306

Book Description
"Python APIs: From Concept to Implementation" is an essential guide for anyone seeking to master the art of API development using Python. This comprehensive resource covers the fundamental concepts of APIs, unraveling their architecture, protocols, and real-world applications. With a clear focus on RESTful APIs, this book explores the design principles and best practices required to build intuitive and scalable APIs. From selecting the right data formats to implementing robust security measures, the book provides detailed insights that cater to the evolving needs of modern software development. Delving into practical applications, the book offers step-by-step guidance on utilizing popular Python frameworks like Flask and FastAPI to construct efficient APIs. Readers are taken through the entire lifecycle of API development, from documentation and testing to deployment and scaling. The inclusion of advanced topics such as asynchronous programming, integration strategies, and performance optimization ensures a comprehensive understanding. All aspects of API development are explored to prepare readers for the challenges of integrating APIs into dynamic applications and scaling them to handle increased demand. "Python APIs: From Concept to Implementation" equips beginners and seasoned developers alike with the knowledge and tools needed to create powerful, reliable, and secure APIs using Python's versatile capabilities. Whether you're building simple applications or managing complex enterprise systems, this book is your ultimate companion in achieving robust API solutions.

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch PDF Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624

Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Introducing Python

Introducing Python PDF Author: Bill Lubanovic
Publisher: "O'Reilly Media, Inc."
ISBN: 1492051322
Category : Computers
Languages : en
Pages : 634

Book Description
Easy to understand and fun to read, this updated edition of Introducing Python is ideal for beginning programmers as well as those new to the language. Author Bill Lubanovic takes you from the basics to more involved and varied topics, mixing tutorials with cookbook-style code recipes to explain concepts in Python 3. End-of-chapter exercises help you practice what you’ve learned. You’ll gain a strong foundation in the language, including best practices for testing, debugging, code reuse, and other development tips. This book also shows you how to use Python for applications in business, science, and the arts, using various Python tools and open source packages.

Learn Python From an Expert: The Complete Guide: With Artificial Intelligence

Learn Python From an Expert: The Complete Guide: With Artificial Intelligence PDF Author: Edson L P Camacho
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 620

Book Description
The Ultimate Guide to Advanced Python and Artificial Intelligence: Unleash the Power of Code! Are you ready to take your Python programming skills to the next level and dive into the exciting world of artificial intelligence? Look no further! We proudly present the comprehensive book written by renowned author Edson L P Camacho: "Advanced Python: Mastering AI." In today's rapidly evolving technological landscape, the demand for AI professionals is soaring. Python, with its simplicity and versatility, has become the go-to language for AI development. Whether you are a seasoned Pythonista or a beginner eager to learn, this book is your gateway to mastering AI concepts and enhancing your programming expertise. What sets "Advanced Python: Mastering AI" apart from other books is its unparalleled combination of in-depth theory and hands-on practicality. Edson L P Camacho, a leading expert in the field, guides you through every step, from laying the foundation of Python fundamentals to implementing cutting-edge AI algorithms. Here's a glimpse of what you'll find within the pages of this comprehensive guide: 1. Python Fundamentals: Review and reinforce your knowledge of Python basics, including data types, control flow, functions, and object-oriented programming. Build a solid foundation to tackle complex AI concepts. 2. Data Manipulation and Visualization: Learn powerful libraries such as NumPy, Pandas, and Matplotlib to handle and analyze data. Understand how to preprocess and visualize data effectively for AI applications. 3. Machine Learning Essentials: Dive into the world of machine learning and explore popular algorithms like linear regression, decision trees, support vector machines, and neural networks. Discover how to train, evaluate, and optimize models for various tasks. 4. Deep Learning and Neural Networks: Delve deeper into neural networks, the backbone of modern AI. Gain insights into deep learning architectures, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Implement advanced techniques like transfer learning and generative models. 5. Natural Language Processing (NLP): Explore the fascinating field of NLP and learn how to process and analyze textual data using Python. Discover techniques like sentiment analysis, named entity recognition, and text generation. 6. Computer Vision: Unleash the power of Python for image and video analysis. Build computer vision applications using popular libraries like OpenCV and TensorFlow. Understand concepts like object detection, image segmentation, and image captioning. 7. Reinforcement Learning: Embark on the exciting journey of reinforcement learning. Master the fundamentals of Q-learning, policy gradients, and deep Q-networks. Create intelligent agents that can learn and make decisions in dynamic environments. "Advanced Python: Mastering AI" not only equips you with the theoretical knowledge but also provides numerous real-world examples and projects to reinforce your understanding. Each chapter is accompanied by practical exercises and coding challenges to sharpen your skills and boost your confidence. Don't miss the opportunity to stay ahead in this AI-driven era. Order your copy of "Advanced Python: Mastering AI" today and unlock the full potential of Python programming with artificial intelligence. Take your career to new heights and become a proficient AI developer. Get ready to write the code that shapes the future!

MANUAL OF PYTHON FOR WEB DEVELOPMENT 2024 Edition

MANUAL OF PYTHON FOR WEB DEVELOPMENT 2024 Edition PDF Author: Diego Rodrigues
Publisher: Diego Rodrigues
ISBN:
Category : Business & Economics
Languages : en
Pages : 153

Book Description
Welcome to "Python for Web Development: Modern Frameworks and Tools". This book is an essential guide for students, professionals, and managers who want to master the technologies shaping the future of web development. Written by Diego Rodrigues, one of the world's leading technical book authors with over 180 titles published in five languages, this manual offers a comprehensive and practical approach to web development with Python. Covering everything from the basics to the most advanced practices, this book provides quick and effective learning using advanced tech writing and storytelling techniques. You will find clear theories, practical examples, case studies, and tools that will facilitate the immediate application of the acquired knowledge. Whether you are beginning your journey into the world of web development or looking to enhance your skills, this book has been carefully structured to meet your needs and exceed expectations. Each chapter has been designed to be a fundamental piece in your understanding of these technologies, ensuring that you are prepared to face challenges and seize the opportunities that the future holds. Open the sample of this book and discover how web development with Python can transform your practices, bringing innovation, efficiency, and strategic vision to your projects and business. Tags Python Django Flask FastAPI web development frameworks design backend frontend APIs RESTful GraphQL agile DevOps test automation pytest CI/CD Git GitHub Docker Kubernetes web security authentication JWT OAuth encryption SQLAlchemy ORM templates HTML CSS JavaScript React Vue.js Angular build tools Webpack continuous integration cloud deployment AWS Heroku DigitalOcean Azure cloud computing scalability load balancing microservices containers virtualization server Nginx Apache performance optimization monitoring logging debugging documentation Swagger ReDoc OpenAPI JSON Schema type hints asyncio ASGI virtual environments pip venv poetry code quality flake8 black code formatting test coverage case studies practical examples best practices innovation efficiency digital transformation Python Java Linux Kali Linux HTML ASP.NET Ada Assembly Language BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General HTML Java JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Elixir Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Celery Tornado Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Travis CI Linear Regression Logistic Regression Decision Trees Random Forests FastAPI AI ML K-Means Clustering Support Vector Tornado Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV iOS Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF aws google cloud ibm azure databricks nvidia meta x Power BI IoT CI/CD Hadoop Spark Pandas NumPy Dask SQLAlchemy web scraping mysql big data science openai chatgpt Handler RunOnUiThread()Qiskit Q# Cassandra Bigtable VIRUS MALWARE docker kubernetes Kali Linux Nmap Metasploit Wireshark information security pen test cybersecurity Linux distributions ethical hacking vulnerability analysis system exploration wireless attacks web application security malware analysis social engineering Android iOS Social Engineering Toolkit SET computer science IT professionals cybersecurity careers cybersecurity expertise cybersecurity library cybersecurity training Linux operating systems cybersecurity tools ethical hacking tools security testing penetration test cycle security concepts mobile security cybersecurity fundamentals cybersecurity techniques cybersecurity skills cybersecurity industry global cybersecurity trends Kali Linux tools cybersecurity education cybersecurity innovation penetration test tools cybersecurity best practices global cybersecurity companies cybersecurity solutions IBM Google Microsoft AWS Cisco Oracle cybersecurity consulting cybersecurity framework network security cybersecurity courses cybersecurity tutorials Linux security cybersecurity challenges cybersecurity landscape cloud security cybersecurity threats cybersecurity compliance cybersecurity research cybersecurity technology

Data Engineering for Machine Learning Pipelines

Data Engineering for Machine Learning Pipelines PDF Author: Pavan Kumar Narayanan
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 651

Book Description


Django 3 By Example

Django 3 By Example PDF Author: Antonio Melé
Publisher: Packt Publishing Ltd
ISBN: 1838989323
Category : Computers
Languages : en
Pages : 569

Book Description
Learn Django 3 with four end-to-end web projects Key FeaturesLearn Django 3 by building real-world web applications from scratch in Python, using coding best practicesIntegrate other technologies into your application with clear, step-by-step explanations and comprehensive example codeImplement advanced functionalities like a full-text search engine, a user activity stream, or a recommendation engineAdd real-time features with Django Channels and WebSocketsBook Description If you want to learn the entire process of developing professional web applications with Python and Django, then this book is for you. In the process of building four professional Django projects, you will learn about Django 3 features, how to solve common web development problems, how to implement best practices, and how to successfully deploy your applications. In this book, you will build a blog application, a social image bookmarking website, an online shop, and an e-learning platform. Step-by-step guidance will teach you how to integrate popular technologies, enhance your applications with AJAX, create RESTful APIs, and set up a production environment for your Django projects. By the end of this book, you will have mastered Django 3 by building advanced web applications. What you will learnBuild real-world web applicationsLearn Django essentials, including models, views, ORM, templates, URLs, forms, and authenticationImplement advanced features such as custom model fields, custom template tags, cache, middleware, localization, and moreCreate complex functionalities, such as AJAX interactions, social authentication, a full-text search engine, a payment system, a CMS, a RESTful API, and moreIntegrate other technologies, including Redis, Celery, RabbitMQ, PostgreSQL, and Channels, into your projectsDeploy Django projects in production using NGINX, uWSGI, and DaphneWho this book is for This book is intended for developers with Python knowledge who wish to learn Django in a pragmatic way. Perhaps you are completely new to Django, or you already know a little but you want to get the most out of it. This book will help you to master the most relevant areas of the framework by building practical projects from scratch. You need to have familiarity with programming concepts in order to read this book. Some previous knowledge of HTML and JavaScript is assumed.