Author: Wei Xia
Publisher: Springer
ISBN: 9811068119
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.
Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications
Author: Wei Xia
Publisher: Springer
ISBN: 9811068119
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.
Publisher: Springer
ISBN: 9811068119
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.
Applications of Metal-Organic Frameworks and Their Derived Materials
Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119650984
Category : Science
Languages : en
Pages : 496
Book Description
Metal–organic frameworks (MOFs) are porous crystalline polymers constructed by metal sites and organic building blocks. Since the discovery of MOFs in the 1990s, they have received tremendous research attention for various applications due to their high surface area, controllable morphology, tunable chemical properties, and multifunctionalities, including MOFs as precursors and self-sacrificing templates for synthesizing metal oxides, heteroatom-doped carbons, metal-atoms encapsulated carbons, and others. Thus, awareness and knowledge about MOFs and their derived nanomaterials with conceptual understanding are essential for the advanced material community. This breakthrough new volume aims to explore down-to-earth applications in fields such as biomedical, environmental, energy, and electronics. This book provides an overview of the structural and fundamental properties, synthesis strategies, and versatile applications of MOFs and their derived nanomaterials. It gives an updated and comprehensive account of the research in the field of MOFs and their derived nanomaterials. Whether as a reference for industry professionals and nanotechnologists or for use in the classroom for graduate and postgraduate students, faculty members, and research and development specialists working in the area of inorganic chemistry, materials science, and chemical engineering, this is a must-have for any library.
Publisher: John Wiley & Sons
ISBN: 1119650984
Category : Science
Languages : en
Pages : 496
Book Description
Metal–organic frameworks (MOFs) are porous crystalline polymers constructed by metal sites and organic building blocks. Since the discovery of MOFs in the 1990s, they have received tremendous research attention for various applications due to their high surface area, controllable morphology, tunable chemical properties, and multifunctionalities, including MOFs as precursors and self-sacrificing templates for synthesizing metal oxides, heteroatom-doped carbons, metal-atoms encapsulated carbons, and others. Thus, awareness and knowledge about MOFs and their derived nanomaterials with conceptual understanding are essential for the advanced material community. This breakthrough new volume aims to explore down-to-earth applications in fields such as biomedical, environmental, energy, and electronics. This book provides an overview of the structural and fundamental properties, synthesis strategies, and versatile applications of MOFs and their derived nanomaterials. It gives an updated and comprehensive account of the research in the field of MOFs and their derived nanomaterials. Whether as a reference for industry professionals and nanotechnologists or for use in the classroom for graduate and postgraduate students, faculty members, and research and development specialists working in the area of inorganic chemistry, materials science, and chemical engineering, this is a must-have for any library.
Nanomaterials for Environmental Applications
Author: Mohamed Abou El-Fetouh Barakat
Publisher: CRC Press
ISBN: 1000532852
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
Nanomaterials for Environmental Applications offers a comprehensive review of the latest advances in nanomaterials-based technologies for the treatment of emerging contaminants in wastewater. It describes the latest developments in the synthesis protocols, including the synthesis of different kinds of nanostructure materials using various physical and chemical methods. Features Discusses the synthesis and characterization of important nanomaterials such as carbon nanostructures, metal and metal oxide nanostructures, polymer nanostructures, and smart 1D-–3D nanomaterials Presents the latest techniques used in the characterization of nanomaterials Covers environmental applications including the remediation of pollutants in wastewater and water purification and disinfection Examines the sources, fate, transport, and ecotoxicology of nanomaterials in the environment. Aimed at researchers and industry professionals, this work will be of interest to chemical, environmental, and materials engineers concerned with the application of advanced materials for environmental and water remediation. Mohamed Abou El-Fetouh Barakat is a Professor of Environmental Sciences at both King Abdulaziz University (KAU)- Saudi Arabia, and Central Metallurgical R&D Institute (CMRDI)- Egypt. He is highly qualified in the fields of industrial waste management and pollution control as well as catalysis and nanotechnology. His experience includes academic research works in Japan, Germany, the United States and Saudi Arabia, as well as initiating and leading industrial research projects in Egypt jointly with the United States. Rajeev Kumar is an Associate Professor in the Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia. His research activities are in the areas of wastewater treatment and materials science. He studies the adsorption and photocatalytic properties of nanomaterials for the removal of contaminants from wastewater.
Publisher: CRC Press
ISBN: 1000532852
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
Nanomaterials for Environmental Applications offers a comprehensive review of the latest advances in nanomaterials-based technologies for the treatment of emerging contaminants in wastewater. It describes the latest developments in the synthesis protocols, including the synthesis of different kinds of nanostructure materials using various physical and chemical methods. Features Discusses the synthesis and characterization of important nanomaterials such as carbon nanostructures, metal and metal oxide nanostructures, polymer nanostructures, and smart 1D-–3D nanomaterials Presents the latest techniques used in the characterization of nanomaterials Covers environmental applications including the remediation of pollutants in wastewater and water purification and disinfection Examines the sources, fate, transport, and ecotoxicology of nanomaterials in the environment. Aimed at researchers and industry professionals, this work will be of interest to chemical, environmental, and materials engineers concerned with the application of advanced materials for environmental and water remediation. Mohamed Abou El-Fetouh Barakat is a Professor of Environmental Sciences at both King Abdulaziz University (KAU)- Saudi Arabia, and Central Metallurgical R&D Institute (CMRDI)- Egypt. He is highly qualified in the fields of industrial waste management and pollution control as well as catalysis and nanotechnology. His experience includes academic research works in Japan, Germany, the United States and Saudi Arabia, as well as initiating and leading industrial research projects in Egypt jointly with the United States. Rajeev Kumar is an Associate Professor in the Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia. His research activities are in the areas of wastewater treatment and materials science. He studies the adsorption and photocatalytic properties of nanomaterials for the removal of contaminants from wastewater.
Metal Oxides in Supercapacitors
Author: Deepak P. Dubal
Publisher: Elsevier
ISBN: 0128104651
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Metal Oxides in Supercapacitors addresses the fundamentals of metal oxide-based supercapacitors and provides an overview of recent advancements in this area. Metal oxides attract most of the materials scientists use due to their excellent physico-chemical properties and stability in electrochemical systems. This justification for the usage of metal oxides as electrode materials in supercapacitors is their potential to attain high capacitance at low cost. After providing the principles, the heart of the book discusses recent advances, including: binary metal oxides-based supercapacitors, nanotechnology, ternary metal oxides, polyoxometalates and hybrids. Moreover, the factors affecting the charge storage mechanism of metal oxides are explored in detail. The electrolytes, which are the soul of supercapacitors and a mostly ignored character of investigations, are also exposed in depth, as is the fabrication and design of supercapacitors and their merits and demerits. Lastly, the market status of supercapacitors and a discussion pointing out the future scope and directions of next generation metal oxides based supercapacitors is explored, making this a comprehensive book on the latest, cutting-edge research in the field. - Explores the most recent advances made in metal oxides in supercapacitors - Discusses cutting-edge nanotechnology for supercapacitors - Includes fundamental properties of metal oxides in supercapacitors that can be used to guide and promote technology development - Contains contributions from leading international scientists active in supercapacitor research and manufacturing
Publisher: Elsevier
ISBN: 0128104651
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Metal Oxides in Supercapacitors addresses the fundamentals of metal oxide-based supercapacitors and provides an overview of recent advancements in this area. Metal oxides attract most of the materials scientists use due to their excellent physico-chemical properties and stability in electrochemical systems. This justification for the usage of metal oxides as electrode materials in supercapacitors is their potential to attain high capacitance at low cost. After providing the principles, the heart of the book discusses recent advances, including: binary metal oxides-based supercapacitors, nanotechnology, ternary metal oxides, polyoxometalates and hybrids. Moreover, the factors affecting the charge storage mechanism of metal oxides are explored in detail. The electrolytes, which are the soul of supercapacitors and a mostly ignored character of investigations, are also exposed in depth, as is the fabrication and design of supercapacitors and their merits and demerits. Lastly, the market status of supercapacitors and a discussion pointing out the future scope and directions of next generation metal oxides based supercapacitors is explored, making this a comprehensive book on the latest, cutting-edge research in the field. - Explores the most recent advances made in metal oxides in supercapacitors - Discusses cutting-edge nanotechnology for supercapacitors - Includes fundamental properties of metal oxides in supercapacitors that can be used to guide and promote technology development - Contains contributions from leading international scientists active in supercapacitor research and manufacturing
Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring
Author: Ram K. Gupta
Publisher: CRC Press
ISBN: 1000569128
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
With an unprecedented population boom and rapid industrial development, environmental pollution has become a severe problem for the ecosystem and public health. Classical techniques for sensing and determining environmental contaminants often require complex pretreatments, expensive equipment, and longer testing times. Therefore, new, and state-of-the-art sensing technologies possessing the advantages of excellent sensitivity, rapid detection, ease of use, and suitability for in situ, real-time, and continuous monitoring of environmental pollutants, are highly desirable. Metal-Organic Frameworks-based Hybrid Materials for Environmental Sensing and Monitoring covers the current-state-of-the-art hybrid nanomaterials based on metal-organic frameworks for electrochemical monitoring purposes. Accomplished authors cover various synthetic routes, methods, and theories behind enhancing the electrochemical properties and applications of metal-organic frameworks-based hybrid nanomaterials for electrochemical sensing of environmental pollutants under one roof. This book is essential reading for all academic and industrial researchers working in the fields of materials science and nanotechnology.
Publisher: CRC Press
ISBN: 1000569128
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
With an unprecedented population boom and rapid industrial development, environmental pollution has become a severe problem for the ecosystem and public health. Classical techniques for sensing and determining environmental contaminants often require complex pretreatments, expensive equipment, and longer testing times. Therefore, new, and state-of-the-art sensing technologies possessing the advantages of excellent sensitivity, rapid detection, ease of use, and suitability for in situ, real-time, and continuous monitoring of environmental pollutants, are highly desirable. Metal-Organic Frameworks-based Hybrid Materials for Environmental Sensing and Monitoring covers the current-state-of-the-art hybrid nanomaterials based on metal-organic frameworks for electrochemical monitoring purposes. Accomplished authors cover various synthetic routes, methods, and theories behind enhancing the electrochemical properties and applications of metal-organic frameworks-based hybrid nanomaterials for electrochemical sensing of environmental pollutants under one roof. This book is essential reading for all academic and industrial researchers working in the fields of materials science and nanotechnology.
Materials for Electrochemical Energy Conversion and Storage
Author: Arumugam Manthiram
Publisher: John Wiley & Sons
ISBN: 1574981358
Category : Technology & Engineering
Languages : en
Pages : 275
Book Description
This new volume covers the latest developments in the field of electrochemistry. It addresses a variety of topics including new materials development, materials synthesis, processing, characterization, property measurements, structure-property relationships, and device performance. A broader view of various electrochemical energy conversion devices make this book a critical read for scientists and engineers working in related fields. Papers from the symposium at the 102nd Annual Meeting of The American Ceramic Society, April 29-May 3, 2000, Missouri and the 103rd Annual Meeting, April 22-25, 2001, Indiana.
Publisher: John Wiley & Sons
ISBN: 1574981358
Category : Technology & Engineering
Languages : en
Pages : 275
Book Description
This new volume covers the latest developments in the field of electrochemistry. It addresses a variety of topics including new materials development, materials synthesis, processing, characterization, property measurements, structure-property relationships, and device performance. A broader view of various electrochemical energy conversion devices make this book a critical read for scientists and engineers working in related fields. Papers from the symposium at the 102nd Annual Meeting of The American Ceramic Society, April 29-May 3, 2000, Missouri and the 103rd Annual Meeting, April 22-25, 2001, Indiana.
Metal-Organic Frameworks for Carbon Capture and Energy
Author: Pooja Ghosh
Publisher:
ISBN: 9780841298088
Category : Carbon sequestration
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780841298088
Category : Carbon sequestration
Languages : en
Pages :
Book Description
Metal-Organic Framework Materials
Author: Leonard R. MacGillivray
Publisher: John Wiley & Sons
ISBN: 1118931580
Category : Science
Languages : en
Pages : 1210
Book Description
Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc
Publisher: John Wiley & Sons
ISBN: 1118931580
Category : Science
Languages : en
Pages : 1210
Book Description
Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc
Nanocarbon Electrochemistry
Author: Nianjun Yang
Publisher: John Wiley & Sons
ISBN: 1119468302
Category : Science
Languages : en
Pages : 385
Book Description
Provides a comprehensive introduction to the field of nanocarbon electrochemistry The discoveries of new carbon materials such as fullerene, graphene, carbon nanotubes, graphene nanoribbon, carbon dots, and graphdiyne have triggered numerous research advances in the field of electrochemistry. This book brings together up-to-date accounts of the recent progress, developments, and achievements in the electrochemistry of different carbon materials, focusing on their unique properties and various applications. Nanocarbon Electrochemistry begins by looking at the studies of heterogeneous electron transfer at various carbon electrodes when redox-active molecules are reversibly and specifically adsorbed on the carbon electrode surface. It then covers electrochemical energy storage applications of various carbon materials, particularly the construction and performance of supercapacitors and batteries by use of graphene and related materials. Next, it concentrates on electrochemical energy conversion applications where electrocatalysis at 0D, 1D, 2D, and 3D carbon materials nanocarbon materials is highlighted. The book finishes with an examination of the contents of electrogenerated chemiluminescence and photoelectrochemical pollutant degradation by use of diamond and related carbon materials. Covers the fundamental properties of different carbon materials and their applications across a wide range of areas Provides sufficient background regarding different applications, which contributes to the understanding of specialists and non-specialists Examines nanoelectrochemistry of adsorption-coupled electron transfer at carbon electrodes; graphene and graphene related materials; diamond electrodes for the electrogenerated chemiluminescence; and more Features contributions from an international team of distinguished researchers Nanocarbon Electrochemistry is an ideal book for students, researchers, and industrial partners working on many diverse fields of electrochemistry, whether they already make frequent use of carbon electrodes in one form of another or are looking at electrodes for new applications.
Publisher: John Wiley & Sons
ISBN: 1119468302
Category : Science
Languages : en
Pages : 385
Book Description
Provides a comprehensive introduction to the field of nanocarbon electrochemistry The discoveries of new carbon materials such as fullerene, graphene, carbon nanotubes, graphene nanoribbon, carbon dots, and graphdiyne have triggered numerous research advances in the field of electrochemistry. This book brings together up-to-date accounts of the recent progress, developments, and achievements in the electrochemistry of different carbon materials, focusing on their unique properties and various applications. Nanocarbon Electrochemistry begins by looking at the studies of heterogeneous electron transfer at various carbon electrodes when redox-active molecules are reversibly and specifically adsorbed on the carbon electrode surface. It then covers electrochemical energy storage applications of various carbon materials, particularly the construction and performance of supercapacitors and batteries by use of graphene and related materials. Next, it concentrates on electrochemical energy conversion applications where electrocatalysis at 0D, 1D, 2D, and 3D carbon materials nanocarbon materials is highlighted. The book finishes with an examination of the contents of electrogenerated chemiluminescence and photoelectrochemical pollutant degradation by use of diamond and related carbon materials. Covers the fundamental properties of different carbon materials and their applications across a wide range of areas Provides sufficient background regarding different applications, which contributes to the understanding of specialists and non-specialists Examines nanoelectrochemistry of adsorption-coupled electron transfer at carbon electrodes; graphene and graphene related materials; diamond electrodes for the electrogenerated chemiluminescence; and more Features contributions from an international team of distinguished researchers Nanocarbon Electrochemistry is an ideal book for students, researchers, and industrial partners working on many diverse fields of electrochemistry, whether they already make frequent use of carbon electrodes in one form of another or are looking at electrodes for new applications.
Electrochemical Applications of Metal-Organic Frameworks
Author: Sushma Dave
Publisher: Elsevier
ISBN: 0323907857
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
Electrochemical Applications of Metal -Organic Frameworks: Advances and Future Potential brings together the basics of Metal-Organic Frameworks (MOFs and it's chemistry and electrochemistry), giving the reader an understanding of the complexities and possibilities of MOF electrochemistry. Providing in-depth coverage of various methods of the synthesis of MOFs for their electrochemical applications, the morphological and electrochemical properties of these materials are discussed along with their future development. Sections cover electrochemical applications of MOFs in batteries, supercapacitors, fuel cells, as anti-corrosive materials, sensors and in electrocatalysis, and more.Recent developments in MOFs that can hold active molecules such as enzymes, bacteria, nanoparticles and promote electrochemical activity are included. This book will be of great interest to researchers and professionals working in industry and academia or anyone interested in the applications of MOF in industrial processes. - Provides in-depth coverage of the various methods of synthesis for metal-organic frameworks and their applications in electrochemistry - Describes MOF based research in emerging technologies, including solid-state electrolytes and battery operation in extreme environments - Provides an instructive roadmap for future MOF research in advanced energy storage devices
Publisher: Elsevier
ISBN: 0323907857
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
Electrochemical Applications of Metal -Organic Frameworks: Advances and Future Potential brings together the basics of Metal-Organic Frameworks (MOFs and it's chemistry and electrochemistry), giving the reader an understanding of the complexities and possibilities of MOF electrochemistry. Providing in-depth coverage of various methods of the synthesis of MOFs for their electrochemical applications, the morphological and electrochemical properties of these materials are discussed along with their future development. Sections cover electrochemical applications of MOFs in batteries, supercapacitors, fuel cells, as anti-corrosive materials, sensors and in electrocatalysis, and more.Recent developments in MOFs that can hold active molecules such as enzymes, bacteria, nanoparticles and promote electrochemical activity are included. This book will be of great interest to researchers and professionals working in industry and academia or anyone interested in the applications of MOF in industrial processes. - Provides in-depth coverage of the various methods of synthesis for metal-organic frameworks and their applications in electrochemistry - Describes MOF based research in emerging technologies, including solid-state electrolytes and battery operation in extreme environments - Provides an instructive roadmap for future MOF research in advanced energy storage devices