Explanatory Model Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Explanatory Model Analysis PDF full book. Access full book title Explanatory Model Analysis by Przemyslaw Biecek. Download full books in PDF and EPUB format.

Explanatory Model Analysis

Explanatory Model Analysis PDF Author: Przemyslaw Biecek
Publisher: CRC Press
ISBN: 0429651376
Category : Business & Economics
Languages : en
Pages : 312

Book Description
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

Explanatory Model Analysis

Explanatory Model Analysis PDF Author: Przemyslaw Biecek
Publisher: CRC Press
ISBN: 0429651376
Category : Business & Economics
Languages : en
Pages : 312

Book Description
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

The Explanatory Power of Models

The Explanatory Power of Models PDF Author: Robert Franck
Publisher: Springer Science & Business Media
ISBN: 1402046766
Category : Political Science
Languages : en
Pages : 305

Book Description
This book progressively works out a method of constructing models which can bridge the gap between empirical and theoretical research in the social sciences. It aims to improve the explanatory power of models. The issue is quite novel, and has benefited from a thorough examination of statistical and mathematical models, conceptual models, diagrams and maps, machines, computer simulations, and artificial neural networks.

Explanatory Item Response Models

Explanatory Item Response Models PDF Author: Paul de Boeck
Publisher: Springer Science & Business Media
ISBN: 1475739907
Category : Social Science
Languages : en
Pages : 394

Book Description
This edited volume gives a new and integrated introduction to item response models (predominantly used in measurement applications in psychology, education, and other social science areas) from the viewpoint of the statistical theory of generalized linear and nonlinear mixed models. It also includes a chapter on the statistical background and one on useful software.

Interpretable Machine Learning

Interpretable Machine Learning PDF Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320

Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Storytelling with Data

Storytelling with Data PDF Author: Cole Nussbaumer Knaflic
Publisher: John Wiley & Sons
ISBN: 1119002265
Category : Mathematics
Languages : en
Pages : 284

Book Description
Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Fundamentals of Machine Learning for Predictive Data Analytics, second edition PDF Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262361108
Category : Computers
Languages : en
Pages : 853

Book Description
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Secondary Analysis of Electronic Health Records

Secondary Analysis of Electronic Health Records PDF Author: MIT Critical Data
Publisher: Springer
ISBN: 3319437429
Category : Medical
Languages : en
Pages : 435

Book Description
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.

Explanatory Pluralism

Explanatory Pluralism PDF Author: C. Mantzavinos
Publisher: Cambridge University Press
ISBN: 1316668487
Category : Science
Languages : en
Pages : 237

Book Description
Explaining phenomena is one of the main activities in which scientists engage. This book proposes a new philosophical theory of scientific explanation by developing and defending the position of explanatory pluralism with the help of the notion of 'explanatory games'. Mantzavinos provides a descriptive account of the explanatory activity of scientists in different domains and shows how they differ from commonsensical explanations offered in everyday life by ordinary people and also from explanations offered in religious contexts. He also shows how an evaluation and a critical appraisal of explanations put forward in different social arenas can take place on the basis of different values. Explanatory Pluralism provides solutions to all important descriptive and normative problems of the philosophical theory of explanation as illustrated in sophisticated case studies from economics and medicine, but also from mythology and religion.

Explanatory Model Analysis

Explanatory Model Analysis PDF Author: Przemyslaw Biecek
Publisher: CRC Press
ISBN: 0429648731
Category : Business & Economics
Languages : en
Pages : 362

Book Description
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

Event Mining for Explanatory Modeling

Event Mining for Explanatory Modeling PDF Author: Laleh Jalali
Publisher: Morgan & Claypool
ISBN: 1450384854
Category : Computers
Languages : en
Pages : 162

Book Description
This book introduces the concept of Event Mining for building explanatory models from analyses of correlated data. Such a model may be used as the basis for predictions and corrective actions. The idea is to create, via an iterative process, a model that explains causal relationships in the form of structural and temporal patterns in the data. The first phase is the data-driven process of hypothesis formation, requiring the analysis of large amounts of data to find strong candidate hypotheses. The second phase is hypothesis testing, wherein a domain expert’s knowledge and judgment is used to test and modify the candidate hypotheses. The book is intended as a primer on Event Mining for data-enthusiasts and information professionals interested in employing these event-based data analysis techniques in diverse applications. The reader is introduced to frameworks for temporal knowledge representation and reasoning, as well as temporal data mining and pattern discovery. Also discussed are the design principles of event mining systems. The approach is reified by the presentation of an event mining system called EventMiner, a computational framework for building explanatory models. The book contains case studies of using EventMiner in asthma risk management and an architecture for the objective self. The text can be used by researchers interested in harnessing the value of heterogeneous big data for designing explanatory event-based models in diverse application areas such as healthcare, biological data analytics, predictive maintenance of systems, computer networks, and business intelligence.