Author: De-Yi Shang
Publisher: Springer
ISBN: 3319944037
Category : Science
Languages : en
Pages : 210
Book Description
This book presents a theoretical study of heat transfer due to laminar natural convection of nanofluids, using Al2O3-water nanofluid as an example. An innovative method of similarity transformation of velocity fields on laminar boundary layers is applied for the development of a mathematical governing model of natural convection with actual nanofluids, and a novel model of the nanofluid's variable thermophysical properties is derived by a mathematical analysis based on the developed model of variable physical properties of fluids combined with the model of the nanofluid's thermal conductivity and viscosity. Based on these, the physical property factors of nanofluids are produced, which leads to a simultaneous solution for deep investigations of hydrodynamics and heat transfer of nanofluid's natural convection. The book also proposes novel predictive formulae for the evaluation of heat transfer of Al2O3-water nanofluid’s natural convection. The formulae have reliable theoretical and practical value because they are developed by rigorous theoretical analysis of heat transfer combined with full consideration of the effects of the temperature-dependent physical properties of nanofluids and the nanoparticle shape factor and concentration, as well as variations of fluid boundary temperatures. The conversion factors proposed help to turn the heat transfer coefficient and rate of fluid natural convection into those of nanofluid natural convection. Furthermore, several calculation examples are provided to demonstrate the heat transfer application of the proposed predictive formulae.
Heat Transfer Due to Laminar Natural Convection of Nanofluids
Author: De-Yi Shang
Publisher: Springer
ISBN: 3319944037
Category : Science
Languages : en
Pages : 210
Book Description
This book presents a theoretical study of heat transfer due to laminar natural convection of nanofluids, using Al2O3-water nanofluid as an example. An innovative method of similarity transformation of velocity fields on laminar boundary layers is applied for the development of a mathematical governing model of natural convection with actual nanofluids, and a novel model of the nanofluid's variable thermophysical properties is derived by a mathematical analysis based on the developed model of variable physical properties of fluids combined with the model of the nanofluid's thermal conductivity and viscosity. Based on these, the physical property factors of nanofluids are produced, which leads to a simultaneous solution for deep investigations of hydrodynamics and heat transfer of nanofluid's natural convection. The book also proposes novel predictive formulae for the evaluation of heat transfer of Al2O3-water nanofluid’s natural convection. The formulae have reliable theoretical and practical value because they are developed by rigorous theoretical analysis of heat transfer combined with full consideration of the effects of the temperature-dependent physical properties of nanofluids and the nanoparticle shape factor and concentration, as well as variations of fluid boundary temperatures. The conversion factors proposed help to turn the heat transfer coefficient and rate of fluid natural convection into those of nanofluid natural convection. Furthermore, several calculation examples are provided to demonstrate the heat transfer application of the proposed predictive formulae.
Publisher: Springer
ISBN: 3319944037
Category : Science
Languages : en
Pages : 210
Book Description
This book presents a theoretical study of heat transfer due to laminar natural convection of nanofluids, using Al2O3-water nanofluid as an example. An innovative method of similarity transformation of velocity fields on laminar boundary layers is applied for the development of a mathematical governing model of natural convection with actual nanofluids, and a novel model of the nanofluid's variable thermophysical properties is derived by a mathematical analysis based on the developed model of variable physical properties of fluids combined with the model of the nanofluid's thermal conductivity and viscosity. Based on these, the physical property factors of nanofluids are produced, which leads to a simultaneous solution for deep investigations of hydrodynamics and heat transfer of nanofluid's natural convection. The book also proposes novel predictive formulae for the evaluation of heat transfer of Al2O3-water nanofluid’s natural convection. The formulae have reliable theoretical and practical value because they are developed by rigorous theoretical analysis of heat transfer combined with full consideration of the effects of the temperature-dependent physical properties of nanofluids and the nanoparticle shape factor and concentration, as well as variations of fluid boundary temperatures. The conversion factors proposed help to turn the heat transfer coefficient and rate of fluid natural convection into those of nanofluid natural convection. Furthermore, several calculation examples are provided to demonstrate the heat transfer application of the proposed predictive formulae.
Heat Transfer Enhancement with Nanofluids
Author: Vincenzo Bianco
Publisher: CRC Press
ISBN: 1482254026
Category : Science
Languages : en
Pages : 473
Book Description
Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from
Publisher: CRC Press
ISBN: 1482254026
Category : Science
Languages : en
Pages : 473
Book Description
Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from
Nanofluids for Heat and Mass Transfer
Author: Bharat Bhanvase
Publisher: Academic Press
ISBN: 0128219475
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
Nanofluids for Heat and Mass Transfer: Fundamentals, Sustainable Manufacturing and Applications presents the latest on the performance of nanofluids in heat transfer systems. Dr. Bharat Bhanvase investigates characterization techniques and the various properties of nanofluids to analyze their efficiency and abilities in a variety of settings. The book moves through a presentation of the fundamentals of synthesis and nanofluid characterization to various properties and applications. Aimed at academics and researchers focused on heat transfer in energy and engineering disciplines, this book considers sustainable manufacturing processes within newer energy harvesting technologies to serve as an authoritative and well-rounded reference. - Highlights the major elements of nanofluids as an energy harvesting fluid, including their preparation methods, characterization techniques, properties and applications - Includes valuable findings and insights from numerical and computational studies - Provides nanofluid researchers with research inspiration to discover new applications and further develop technologies
Publisher: Academic Press
ISBN: 0128219475
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
Nanofluids for Heat and Mass Transfer: Fundamentals, Sustainable Manufacturing and Applications presents the latest on the performance of nanofluids in heat transfer systems. Dr. Bharat Bhanvase investigates characterization techniques and the various properties of nanofluids to analyze their efficiency and abilities in a variety of settings. The book moves through a presentation of the fundamentals of synthesis and nanofluid characterization to various properties and applications. Aimed at academics and researchers focused on heat transfer in energy and engineering disciplines, this book considers sustainable manufacturing processes within newer energy harvesting technologies to serve as an authoritative and well-rounded reference. - Highlights the major elements of nanofluids as an energy harvesting fluid, including their preparation methods, characterization techniques, properties and applications - Includes valuable findings and insights from numerical and computational studies - Provides nanofluid researchers with research inspiration to discover new applications and further develop technologies
Viscous Fluid Flow
Author: Frank M. White
Publisher:
ISBN: 9780071009959
Category : Viscous flow
Languages : en
Pages : 614
Book Description
Designed for higher level courses in viscous fluid flow, this text presents a comprehensive treatment of the subject. This revision retains the approach and organization for which the first edition has been highly regarded, while bringing the material completely up-to-date. It contains new information on the latest technological advances and includes many more applications, thoroughly updated problems and exercises.
Publisher:
ISBN: 9780071009959
Category : Viscous flow
Languages : en
Pages : 614
Book Description
Designed for higher level courses in viscous fluid flow, this text presents a comprehensive treatment of the subject. This revision retains the approach and organization for which the first edition has been highly regarded, while bringing the material completely up-to-date. It contains new information on the latest technological advances and includes many more applications, thoroughly updated problems and exercises.
Convective Heat Transfer, Third Edition
Author: Sadik Kakac
Publisher: CRC Press
ISBN: 1466583444
Category : Science
Languages : en
Pages : 624
Book Description
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids. The text includes the physical mechanisms of convective heat transfer phenomena, exact or approximate solution methods, and solutions under various conditions, as well as the derivation of the basic equations of convective heat transfer and their solutions. A complete solutions manual and figure slides are also available for adopting professors. Convective Heat Transfer, Third Edition is an ideal reference for advanced research or coursework in heat transfer, and as a textbook for senior/graduate students majoring in mechanical engineering and relevant engineering courses.
Publisher: CRC Press
ISBN: 1466583444
Category : Science
Languages : en
Pages : 624
Book Description
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids. The text includes the physical mechanisms of convective heat transfer phenomena, exact or approximate solution methods, and solutions under various conditions, as well as the derivation of the basic equations of convective heat transfer and their solutions. A complete solutions manual and figure slides are also available for adopting professors. Convective Heat Transfer, Third Edition is an ideal reference for advanced research or coursework in heat transfer, and as a textbook for senior/graduate students majoring in mechanical engineering and relevant engineering courses.
Hybrid Nanofluids for Convection Heat Transfer
Author: Hafiz Muhammad Ali
Publisher: Academic Press
ISBN: 012819281X
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. - Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids - Reviews parameter selection and property measurement techniques for thermal performance calibration - Explores the use of predictive mathematical techniques for experimental properties
Publisher: Academic Press
ISBN: 012819281X
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. - Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids - Reviews parameter selection and property measurement techniques for thermal performance calibration - Explores the use of predictive mathematical techniques for experimental properties
Nanofluids for Heat Exchangers
Author: Hafiz Muhammad Ali
Publisher: Springer Nature
ISBN: 9811932271
Category : Science
Languages : en
Pages : 160
Book Description
This book describes the importance of heat transfer in heat exchangers, and fluids properties play a vital role to increase heat transfer rate translating the size of the equipment and cuts in the capital and running cost in the long term. Nanofluids applications in heat exchangers will help to improve the thermophysical properties of the fluid and therefore heat transfer. And, this book explains the enhancing mechanisms of heat transfer by employing nanofluids in heat exchangers. A critical discussion will enable to estimate the pros and cons of such fluids in different types of heat exchangers. Prevailing working conditions for short- and long-term implementation of various types of nanofluids will be discussed and introduced to the readers. This book helps the researchers, scientist and academicians working in the domain to be able to get a comprehensive knowledge at one place regarding the preparation, properties, measurements, data reduction, characteristics and applications of nanofluids in heat exchangers.
Publisher: Springer Nature
ISBN: 9811932271
Category : Science
Languages : en
Pages : 160
Book Description
This book describes the importance of heat transfer in heat exchangers, and fluids properties play a vital role to increase heat transfer rate translating the size of the equipment and cuts in the capital and running cost in the long term. Nanofluids applications in heat exchangers will help to improve the thermophysical properties of the fluid and therefore heat transfer. And, this book explains the enhancing mechanisms of heat transfer by employing nanofluids in heat exchangers. A critical discussion will enable to estimate the pros and cons of such fluids in different types of heat exchangers. Prevailing working conditions for short- and long-term implementation of various types of nanofluids will be discussed and introduced to the readers. This book helps the researchers, scientist and academicians working in the domain to be able to get a comprehensive knowledge at one place regarding the preparation, properties, measurements, data reduction, characteristics and applications of nanofluids in heat exchangers.
Nanofluids and Their Engineering Applications
Author: K.R.V. Subramanian
Publisher: CRC Press
ISBN: 0429886993
Category : Science
Languages : en
Pages : 517
Book Description
Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment
Publisher: CRC Press
ISBN: 0429886993
Category : Science
Languages : en
Pages : 517
Book Description
Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment
Nanofluids
Author: Mohammad Mehdi Rashidi
Publisher: Elsevier
ISBN: 0443136262
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Nanofluids are a new class of heat transfer fluids engineered by dispersing and stably suspending nanoparticles in traditional heat transfer fluids. Recently they have obtained global attention from the scientific community owing to their unique properties and significant applications in different engineering fields. Nanofluids: Preparation, Applications and Simulation Methods provides a comprehensive review of recent advances in this important research field. Different approaches for preparing some remarkable families of nanofluids such as aluminum oxide-based nanofluids, CuO/Cu-based nanofluids, carbon nanotubes/graphene-based nanofluids, ZnO-based nanofluids, Fe3O4-based nanofluids, and SiO2-based nanofluids are discussed in detail as well as their current and potential applications. Different approaches for numerical, semi-analytical and analytical simulations are also discussed including molecular dynamics, the Lattice Boltzmann method, and spectral methods, as well as advanced analytical techniques such as the Differential Transform Method, the Homotopy Analysis Method, and Optimal Homotopy Analysis. The book will be a valuable reference resource for academic and industrial researchers, materials scientists and engineers, nanotechnologists, and chemists working in the development of nanomaterials and nanofluids for heat transfer in energy and engineering applications. - Covers the synthesis of nanostructures, preparation of nanofluids, different applications and proposed models for fluid mechanics and heat transfer - Presents recent advances on preparation methods, including green chemistry-based methods for preparation of nanomaterials and nanofluids - Includes novel model-based approaches such as molecular dynamics and Lattice Boltzmann methods - Delves into applications in renewable energy technologies and thermal management - Contains a Semi-analytical approach for solving Time-Fractional Navier-Stokes Equation
Publisher: Elsevier
ISBN: 0443136262
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Nanofluids are a new class of heat transfer fluids engineered by dispersing and stably suspending nanoparticles in traditional heat transfer fluids. Recently they have obtained global attention from the scientific community owing to their unique properties and significant applications in different engineering fields. Nanofluids: Preparation, Applications and Simulation Methods provides a comprehensive review of recent advances in this important research field. Different approaches for preparing some remarkable families of nanofluids such as aluminum oxide-based nanofluids, CuO/Cu-based nanofluids, carbon nanotubes/graphene-based nanofluids, ZnO-based nanofluids, Fe3O4-based nanofluids, and SiO2-based nanofluids are discussed in detail as well as their current and potential applications. Different approaches for numerical, semi-analytical and analytical simulations are also discussed including molecular dynamics, the Lattice Boltzmann method, and spectral methods, as well as advanced analytical techniques such as the Differential Transform Method, the Homotopy Analysis Method, and Optimal Homotopy Analysis. The book will be a valuable reference resource for academic and industrial researchers, materials scientists and engineers, nanotechnologists, and chemists working in the development of nanomaterials and nanofluids for heat transfer in energy and engineering applications. - Covers the synthesis of nanostructures, preparation of nanofluids, different applications and proposed models for fluid mechanics and heat transfer - Presents recent advances on preparation methods, including green chemistry-based methods for preparation of nanomaterials and nanofluids - Includes novel model-based approaches such as molecular dynamics and Lattice Boltzmann methods - Delves into applications in renewable energy technologies and thermal management - Contains a Semi-analytical approach for solving Time-Fractional Navier-Stokes Equation
Thermal Characteristics and Convection in Nanofluids
Author: Aditya Kumar
Publisher: Springer Nature
ISBN: 981334248X
Category : Science
Languages : en
Pages : 230
Book Description
This book covers synthesis, characterization, stability, heat transfer and applications of nanofluids. It includes different types of nanofluids, their preparation methods as well as its effects on the stability and thermophysical properties of nanofluids. It provides a discussion on the mechanism behind the change in the thermal properties of nanofluids and heat transfer behaviour. It presents the latest information and discussion on the preparation and advanced characterization of nanofluids. It also consists of stability analysis of nanofluids and discussion on why it is essential for the industrial application. The book provides a discussion on thermal boundary layer properties in convection. Future directions for heat transfer applications to make the production and application of nanofluids at industrial level are also discussed.
Publisher: Springer Nature
ISBN: 981334248X
Category : Science
Languages : en
Pages : 230
Book Description
This book covers synthesis, characterization, stability, heat transfer and applications of nanofluids. It includes different types of nanofluids, their preparation methods as well as its effects on the stability and thermophysical properties of nanofluids. It provides a discussion on the mechanism behind the change in the thermal properties of nanofluids and heat transfer behaviour. It presents the latest information and discussion on the preparation and advanced characterization of nanofluids. It also consists of stability analysis of nanofluids and discussion on why it is essential for the industrial application. The book provides a discussion on thermal boundary layer properties in convection. Future directions for heat transfer applications to make the production and application of nanofluids at industrial level are also discussed.