Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test PDF full book. Access full book title Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test by Jose Domingo Romero Lugo. Download full books in PDF and EPUB format.

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test PDF Author: Jose Domingo Romero Lugo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process is to increase the conductivity of the reservoir by the creation of fractures deep into the formation, changing the flow pattern from radial to linear flow. The dynamic conductivity test was used for this research to evaluate the effect of closure stress, temperature, proppant concentration, and flow back rates on fracture conductivity. The objective of performing a dynamic conductivity test is to be able to mimic actual field conditions by pumping fracturing fluid/proppant slurry fluid into a conductivity cell, and applying closure stress afterwards. In addition, a factorial design was implemented in order to determine the main effect of each of the investigated factors and to minimize the number of experimental runs. Due to the stochastic nature of the dynamic conductivity test, each experiment was repeated several times to evaluate the consistency of the results. Experimental results indicate that the increase in closure stress has a detrimental effect on fracture conductivity. This effect can be attributed to the reduction in fracture width as closure stress was increased. Moreover, the formation of channels at low proppant concentration plays a significant role in determining the final conductivity of a fracture. The presence of these channels created an additional flow path for nitrogen, resulting in a significant increase in the conductivity of the fracture. In addition, experiments performed at high temperatures and stresses exhibited a reduction in fracture conductivity. The formation of a polymer cake due to unbroken gel dried up at high temperatures further impeded the propped conductivity. The effect of nitrogen rate was observed to be inversely proportional to fracture conductivity. The significant reduction in fracture conductivity could possibly be due to the effect of polymer dehydration at higher flow rates and temperatures. However, there is no certainty from experimental results that this conductivity reduction is an effect that occurs in real fractures or whether it is an effect that is only significant in laboratory conditions. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148364

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test PDF Author: Jose Domingo Romero Lugo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process is to increase the conductivity of the reservoir by the creation of fractures deep into the formation, changing the flow pattern from radial to linear flow. The dynamic conductivity test was used for this research to evaluate the effect of closure stress, temperature, proppant concentration, and flow back rates on fracture conductivity. The objective of performing a dynamic conductivity test is to be able to mimic actual field conditions by pumping fracturing fluid/proppant slurry fluid into a conductivity cell, and applying closure stress afterwards. In addition, a factorial design was implemented in order to determine the main effect of each of the investigated factors and to minimize the number of experimental runs. Due to the stochastic nature of the dynamic conductivity test, each experiment was repeated several times to evaluate the consistency of the results. Experimental results indicate that the increase in closure stress has a detrimental effect on fracture conductivity. This effect can be attributed to the reduction in fracture width as closure stress was increased. Moreover, the formation of channels at low proppant concentration plays a significant role in determining the final conductivity of a fracture. The presence of these channels created an additional flow path for nitrogen, resulting in a significant increase in the conductivity of the fracture. In addition, experiments performed at high temperatures and stresses exhibited a reduction in fracture conductivity. The formation of a polymer cake due to unbroken gel dried up at high temperatures further impeded the propped conductivity. The effect of nitrogen rate was observed to be inversely proportional to fracture conductivity. The significant reduction in fracture conductivity could possibly be due to the effect of polymer dehydration at higher flow rates and temperatures. However, there is no certainty from experimental results that this conductivity reduction is an effect that occurs in real fractures or whether it is an effect that is only significant in laboratory conditions. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148364

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test PDF Author: Juan Correa Castro
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Unconventional gas has become an important resource to help meet our future energy demands. Although plentiful, it is difficult to produce this resource, when locked in a massive sedimentary formation. Among all unconventional gas resources, tight gas sands represent a big fraction and are often characterized by very low porosity and permeability associated with their producing formations, resulting in extremely low production rate. The low flow properties and the recovery factors of these sands make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a hydraulic fracture is to create a long, highly conductive fracture to facilitate the gas flow from the reservoir to the wellbore to obtain commercial production rates. Fracture conductivity depends on several factors, such as like the damage created by the gel during the treatment and the gel clean-up after the treatment. This research is focused on predicting more accurately the fracture conductivity, the gel damage created in fractures, and the fracture cleanup after a hydraulic fracture treatment under certain pressure and temperature conditions. Parameters that alter fracture conductivity, such as polymer concentration, breaker concentration and gas flow rate, are also examined in this study. A series of experiments, using a procedure of "dynamical fracture conductivity test," were carried out. This procedure simulates the proppant/frac fluid slurries flow into the fractures in a low-permeability rock, as it occurs in the field, using different combinations of polymer and breaker concentrations under reservoirs conditions. The result of this study provides the basis to optimize the fracturing fluids and the polymer loading at different reservoir conditions, which may result in a clean and conductive fracture. Success in improving this process will help to decrease capital expenditures and increase the production in unconventional tight gas reservoirs.

Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test

Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test PDF Author: Fivman Marpaung
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250°F) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory "dynamic fracture conductivity" tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150°F. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Experimental Investigation of Propped Fracture Conductivity

Experimental Investigation of Propped Fracture Conductivity PDF Author: Abhinav Mittal
Publisher:
ISBN:
Category : Drilling muds
Languages : en
Pages : 236

Book Description


Development, Setup and Testing of a Dynamic Hydraulic Fracture Conductivity Apparatus

Development, Setup and Testing of a Dynamic Hydraulic Fracture Conductivity Apparatus PDF Author: Potcharaporn Pongthunya
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
One of the most critical parameters in the success of a hydraulic fracturing treatment is to have sufficiently high fracture conductivity. Unbroken polymers can cause permeability impairment in the proppant pack and/or in the matrix along the fracture face. The objectives of this research project were to design and set up an experimental apparatus for dynamic fracture conductivity testing and to create a fracture conductivity test workflow standard. This entirely new dynamic fracture conductivity measurement will be used to perform extensive experiments to study fracturing fluid cleanup characteristics and investigate damage resulting from unbroken polymer gel in the proppant pack. The dynamic fracture conductivity experiment comprises two parts: pumping fracturing fluid into the cell and measuring proppant pack conductivity. I carefully designed the hydraulic fracturing laboratory to provide appropriate scaling of the field conditions experimentally. The specifications for each apparatus were carefully considered with flexibility for further studies and the capability of each apparatus was defined. I generated comprehensive experimental procedures for each experiment stage. By following the procedure, the experiment can run smoothly. Most of dry runs and experiments performed with sandstone were successful.

New Frontiers in Oil and Gas Exploration

New Frontiers in Oil and Gas Exploration PDF Author: Congrui Jin
Publisher: Springer
ISBN: 3319401246
Category : Technology & Engineering
Languages : en
Pages : 522

Book Description
This contributed volume presents a multi-perspective collection of the latest research findings on oil and gas exploration and imparts insight that can greatly assist in understanding field behavior, design of test programs, and design of field operations. With this book, engineers also gain a powerful guide to the most commonly used numerical simulation methods that aid in reservoir modelling. In addition, the contributors explore development of technologies that allow for cost effective oil and gas exploration while minimizing the impact on our water resources, surface and groundwater aquifers, geological stability of impacted areas, air quality, and infrastructure assets such as roads, pipelines, water, and wastewater networks. Easy to understand, the book identifies equipment and procedural problems inherent to oil and gas operations and provides systematic approaches for solving them.

Experimental Study of the Effect of Stress and Fluid Sensitivity on Propped and Un-propped Fracture Conductivity in Preserved Reservoir Shale

Experimental Study of the Effect of Stress and Fluid Sensitivity on Propped and Un-propped Fracture Conductivity in Preserved Reservoir Shale PDF Author: Pratik Kakkar
Publisher:
ISBN:
Category :
Languages : en
Pages : 130

Book Description
A good amount of work has been done on analyzing the effect of stress and fluid sensitivity on fracture conductivity in sandstones. This thesis tries to answer similar questions with regard to shale formations. Shales are very sensitive to aqueous fluids and their mechanical properties change when exposed to it. This mechanical property change in shale is mainly caused due to clay swelling. Some of the previous researchers working on shale fluid sensitivity failed to use preserved reservoir cores for their experiments and allowed them to dry out. This study has been conducted on preserved Utica and Eagle Ford core samples. Experiments were conducted to study the effect of effective stress on propped and un-propped fracture conductivity. These experiments were conducted at reservoir temperature and pressure conditions to mimic field conditions. Different fluids were flowed through the fracture to compare the effect of different fluids on fracture conductivity. To prevent clay swelling various clay stabilizers are used in the field during drilling and fracturing operations. Experiments were conducted to test the effectiveness of different clay stabilizers in preventing fracture conductivity reduction. Some of the clay stabilizers were more effective than others but all of them were unable to prevent fracture conductivity reduction when fracture was flowed with a high pH fluid.

A Study of the Effect of Stress and Fluid Sensitivity on Propped Fracture Conductivity in Preserved Reservoir Shales

A Study of the Effect of Stress and Fluid Sensitivity on Propped Fracture Conductivity in Preserved Reservoir Shales PDF Author: John Wesley Pedlow
Publisher:
ISBN:
Category :
Languages : en
Pages : 180

Book Description
A sizable amount of literature exists analyzing the effect of confining stress on fracture conductivity in sandstones. This thesis attempts to answer similar questions with regard to shale formations. The low Young's Moduli and Brinell hardness values characteristic of many prospective shale formations may lead to a great deal of embedment and fines production which can drastically reduce fracture conductivity. Furthermore, shales exhibit sensitivity to aqueous fluids which may cause them to be weakened in the presence of certain fracturing fluids. Previous work analyzing shale fluid sensitivity has failed to preserve the shales' formation properties by allowing the shale to dry out. This paper presents a study of propped fracture conductivity experiments at reservoir temperature and pressure using various North American shale reservoir cores. Exposure to the atmosphere can alter the mechanical properties of the shale by either drying or hydrating the samples, so care was taken to preserve these shales in their native state by maintaining constant water activity (relative humidity). Variations in applied closure stress and aqueous fluid exposure were analyzed and in certain cases altered the propped fracture conductivity by crushing proppant, embedding the proppant into the fracture face, and producing fines. The damage to fracture conductivity is correlated to mineralogy for the various shale samples. These findings show that a one-size-fits-all frac design will not work in every shale formation, rather a tailored approach to each shale is necessary. In the future, the results of this work will be analyzed alongside easier to perform Brinell hardness tests, swelling tests, and other characterization techniques incorporated into the UT Shale Characterization Protocol. Correlations were developed to relate the simpler tests to the fracture conductivity experiments which yield a straight forward method to determine the role embedment and fluid sensitivity have on post treatment fracture conductivity in shales. The UT Shale characterization Protocol can then be used to optimize the design and execution of fracing treatments.

Unconventional Reservoir Geomechanics

Unconventional Reservoir Geomechanics PDF Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107087074
Category : Business & Economics
Languages : en
Pages : 495

Book Description
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Fossil Energy Update

Fossil Energy Update PDF Author:
Publisher:
ISBN:
Category : Fossil fuels
Languages : en
Pages : 952

Book Description