Experimental Investigation Into Convective Heat Transfer in the Transition Flow Regime by Using Nanofluids in a Rectangular Channel PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Experimental Investigation Into Convective Heat Transfer in the Transition Flow Regime by Using Nanofluids in a Rectangular Channel PDF full book. Access full book title Experimental Investigation Into Convective Heat Transfer in the Transition Flow Regime by Using Nanofluids in a Rectangular Channel by Sohaib Mustafa Mohammed Osman. Download full books in PDF and EPUB format.

Experimental Investigation Into Convective Heat Transfer in the Transition Flow Regime by Using Nanofluids in a Rectangular Channel

Experimental Investigation Into Convective Heat Transfer in the Transition Flow Regime by Using Nanofluids in a Rectangular Channel PDF Author: Sohaib Mustafa Mohammed Osman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The growing demand for energy worldwide requires attention to the design and operating of heat exchangers and thermal devices to utilise and save thermal energy. There is a need to find new heat transport fluids with better heat transfer properties to increase convective heat transfer, and nanofluids are good alternatives to conventional heat transport fluids. Although extensive research has been done on the properties of nanofluids in recent decades, there is still a lack of research on convection heat transfer involving nanofluids, particularly in the transitional flow regime. This study focused on the application of nanofluids in heat exchangers as heat transport fluids by investigating forced convective heat transfer of alumina-water and titanium dioxide-water nanofluids prepared by using the one-step method. The particle size used was 46 nm and 42 nm for the aluminium oxide and the titanium dioxide respectively. Uniform heat flux boundary conditions were used by uniformly heating the rectangular channel electrically. Nanofluids with volume concentrations of 0.3, 0.5 and 1% were used for the alumina-water nanofluids, and volume concentrations of 0.3, 0.5, 0.7 and 1% were used for the titanium dioxide-water nanofluids. The viscosity of the nanofluids under investigation was determined experimentally, while the thermal conductivity and other properties were predicted by using suitable correlations from the literature. A Reynolds number range of 200 to 7 000 was covered, and the investigated flow rates included the laminar and turbulent flow regimes, as well as the transition regime from laminar to turbulent flow. Temperatures and pressure drops were measured to evaluate heat transfer coefficients, Nusselt numbers and pressure drop coefficients. Heat transfer and hydrodynamic characteristics in the transition flow regime were carefully studied and compared with those in the transition regime when flowing pure water in the same test section. The study also investigated another approach of enhancing heat transfer in heat exchangers by increasing the heat transfer area of the heat exchanger itself, and this was done by filling the rectangular test section with porous media to increase the heat transfer surface area and thus enhance heat transfer. Hence in this study, the effect of using porous media was also studied by filling the rectangular test section with high-porosity nickel foam. The permeability of the used nickel foam was determined by conducting pressure drop measurements through the nickel foam in the test section, and heat transfer and pressure drop parameters were measured and compared with those in the empty test section. The results showed that all the nanofluids used enhanced heat transfer, particularly in the transition flow regime. The 1.0% volume concentration alumina nanofluid showed maximum enhancement of the heat transfer coefficient, with values of 54% and 11% in the turbulent regime. The maximum enhancement of the heat transfer coefficient was 29.3% in the transition regime for the 1.0% volume concentration titanium dioxide-water nanofluid. The thermal performance factor in the transition flow regime was observed to be better than that in the turbulent and laminar flow regimes for all the nanofluids. The results of the nickel foam test section showed that the values of the friction coefficient were 24.5 times higher than the values of the empty test section, and the Nusselt number was observed to be three times higher when using nickel foam than without foam in the test section. No transition regime was observed for the foam-filled test section on either the heat transfer results or the pressure drop results; however, transition from laminar to turbulent was found for the test section without foam. The results of the thermal factor of the foam-filled test section showed a thermal performance factor higher than unity through the entire Reynolds number range of 2 000 to 6 500, with better thermal performance factor at lower Reynolds number.

Experimental Investigation Into Convective Heat Transfer in the Transition Flow Regime by Using Nanofluids in a Rectangular Channel

Experimental Investigation Into Convective Heat Transfer in the Transition Flow Regime by Using Nanofluids in a Rectangular Channel PDF Author: Sohaib Mustafa Mohammed Osman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The growing demand for energy worldwide requires attention to the design and operating of heat exchangers and thermal devices to utilise and save thermal energy. There is a need to find new heat transport fluids with better heat transfer properties to increase convective heat transfer, and nanofluids are good alternatives to conventional heat transport fluids. Although extensive research has been done on the properties of nanofluids in recent decades, there is still a lack of research on convection heat transfer involving nanofluids, particularly in the transitional flow regime. This study focused on the application of nanofluids in heat exchangers as heat transport fluids by investigating forced convective heat transfer of alumina-water and titanium dioxide-water nanofluids prepared by using the one-step method. The particle size used was 46 nm and 42 nm for the aluminium oxide and the titanium dioxide respectively. Uniform heat flux boundary conditions were used by uniformly heating the rectangular channel electrically. Nanofluids with volume concentrations of 0.3, 0.5 and 1% were used for the alumina-water nanofluids, and volume concentrations of 0.3, 0.5, 0.7 and 1% were used for the titanium dioxide-water nanofluids. The viscosity of the nanofluids under investigation was determined experimentally, while the thermal conductivity and other properties were predicted by using suitable correlations from the literature. A Reynolds number range of 200 to 7 000 was covered, and the investigated flow rates included the laminar and turbulent flow regimes, as well as the transition regime from laminar to turbulent flow. Temperatures and pressure drops were measured to evaluate heat transfer coefficients, Nusselt numbers and pressure drop coefficients. Heat transfer and hydrodynamic characteristics in the transition flow regime were carefully studied and compared with those in the transition regime when flowing pure water in the same test section. The study also investigated another approach of enhancing heat transfer in heat exchangers by increasing the heat transfer area of the heat exchanger itself, and this was done by filling the rectangular test section with porous media to increase the heat transfer surface area and thus enhance heat transfer. Hence in this study, the effect of using porous media was also studied by filling the rectangular test section with high-porosity nickel foam. The permeability of the used nickel foam was determined by conducting pressure drop measurements through the nickel foam in the test section, and heat transfer and pressure drop parameters were measured and compared with those in the empty test section. The results showed that all the nanofluids used enhanced heat transfer, particularly in the transition flow regime. The 1.0% volume concentration alumina nanofluid showed maximum enhancement of the heat transfer coefficient, with values of 54% and 11% in the turbulent regime. The maximum enhancement of the heat transfer coefficient was 29.3% in the transition regime for the 1.0% volume concentration titanium dioxide-water nanofluid. The thermal performance factor in the transition flow regime was observed to be better than that in the turbulent and laminar flow regimes for all the nanofluids. The results of the nickel foam test section showed that the values of the friction coefficient were 24.5 times higher than the values of the empty test section, and the Nusselt number was observed to be three times higher when using nickel foam than without foam in the test section. No transition regime was observed for the foam-filled test section on either the heat transfer results or the pressure drop results; however, transition from laminar to turbulent was found for the test section without foam. The results of the thermal factor of the foam-filled test section showed a thermal performance factor higher than unity through the entire Reynolds number range of 2 000 to 6 500, with better thermal performance factor at lower Reynolds number.

Nanofluid Applications for Advanced Thermal Solutions

Nanofluid Applications for Advanced Thermal Solutions PDF Author: Shriram S. Sonawane
Publisher: Elsevier
ISBN: 0443152403
Category : Technology & Engineering
Languages : en
Pages : 381

Book Description
Nanofluid Applications for Advanced Thermal Solutions covers heat transfer applications of nanofluids in a variety of fields and the main techniques used in nanofluid flow and heat transfer analysis. The book features an introduction to heat transfer, nanofluid conduction, convection and nanofluid boiling and provides a thorough understanding of a variety of applications, including the energy storage component of solar PVT systems. It covers fundamental topics such as the analysis and measurement of thermophysical properties, convection, and heat transfer equipment performance, and provides a rigorous framework to assist readers in developing new nanofluid-based devices. Finally, the book explores convective instabilities, nanofluids in porous media, and entropy generation in nanofluids. This will be a valuable resource for upper undergraduate, postgraduate, and doctoral students and researchers in the fields of nanotechnology and nanofluids looking at heat transfer processes in chemical engineering and the petroleum industry. Provides a comprehensive overview of the heat transfer application of nanofluids in a variety of fields Features numerical and experimental investigations of hybrid and mono nanoparticles based nanofluids Explores comparative performance investigations of various nanofluids for absorption/regeneration and metal extraction/stripping operations Provides case examples of operation and scale-up challenges for nanofluid applications in the industrial process

Localized Energy Transition in the 4th Industrial Revolution

Localized Energy Transition in the 4th Industrial Revolution PDF Author: Opeyeolu Timothy Laseinde
Publisher: CRC Press
ISBN: 104014943X
Category : Technology & Engineering
Languages : en
Pages : 321

Book Description
This book presents a holistic view on localized energy transition while addressing current challenges associated with the production of biofuels, introducing new materials to produce solar photovoltaic (PV) panels, and digital systems for sustainable energy monitoring on a small scale, carbon capture, and sequestration. Also, each chapter of the book addresses specific aspects of the renewable and sustainable energy space while focusing more on energy improvement and storage technologies that are practical focused. Features: Offers useful information on new forms of renewable energy generation with reference to Industry 4.0. Illustrates practical approaches to energy transition. Provides guidance on renewable energy sources and energy storage systems. Discusses the application of the Fourth Industrial Revolution (4IR)-related approaches to emerging energy storage technologies. Includes studies that reveal approaches to realizing productivity, profitability, and increased return on investment (ROI). This book is aimed at graduate students and researchers in mechanical, chemical, and mechatronics engineering and renewable energy systems.

Experimental Investigation of Forced Convection Heat Transfer of Nanofluids in a Microchannel Using Temperature Nanosensors

Experimental Investigation of Forced Convection Heat Transfer of Nanofluids in a Microchannel Using Temperature Nanosensors PDF Author: Jiwon Yu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Experiments were performed to study forced convective heat transfer of de-ionized water (DI water) and aqueous nanofluids flowing in a microchannel. An array of temperature nanosensors, called "Thin Film Thermocouples (TFT)", was utilized for performing the experimental measurements. TFT arrays were designed (which included design of photomask layout), microfabricated, packaged and assembled for testing with the experimental apparatus. Heat removal rates from the heated surface to the different testing fluids were measured by varying the coolant flow rates, wall temperatures, nanoparticle material, nanoparticle morphology (shape and nanoparticle size) as well as mass concentrations of nanoparticles in the coolants. Anomalous thermal behavior was observed in the forced convective heat transfer experiments. Precipitation of the nanoparticles on the heat exchanging surface was monitored using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray spectroscopy (EDX). Isolated precipitation of nanoparticles is expected to cause formation of "nanofins" leading to enhancement of surface area and thus resulting in enhanced convective heat transfer to the nanofluid coolants. However, excessive precipitation (caused due to the agglomeration of the nanoparticles in the nanofluid coolant) causes scaling (fouling) of the heat exchanging surfaces and thus results in degradation of convective heat transfer. This study shows that the surface morphology plays a crucial role in determining the efficacy of convective heat transfer involving suspensions of nanoparticles in coolants (or nanofluids). Flow visualization and quantitative estimation of near-wall temperature profiles were performed using quantum dots and fluorescent dyes. This non-contact measurement technique for temperature and flow profiles in microchannels using quantum dots is expected to make pioneering contribution to the field of experimental flow visualization and to the study of micro/nano-scale heat transfer phenomena, particularly for forced convective heat transfer of various coolants, including nanofluids. Logical extensions of this study were explored and future directions were proposed. Preliminary experiments to demonstrate feasibility showed significant enhancement in the flow boiling heat flux values for nanofluids compared to that of pure solvent (DIW). Based on the novel phenomena observed in this study several other topics for future research were suggested, such as, using Surface Plasmon Resonance (SPR) platforms to monitor precipitation of nanoparticles on microchannel surfaces in real time (e.g., for generating surface isotherms). The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148235

Hybrid Nanofluids for Convection Heat Transfer

Hybrid Nanofluids for Convection Heat Transfer PDF Author: Hafiz Muhammad Ali
Publisher: Academic Press
ISBN: 012819281X
Category : Technology & Engineering
Languages : en
Pages : 304

Book Description
Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids Reviews parameter selection and property measurement techniques for thermal performance calibration Explores the use of predictive mathematical techniques for experimental properties

Micro- and Nanoflows

Micro- and Nanoflows PDF Author: Valery Ya. Rudyak
Publisher: Springer
ISBN: 3319755234
Category : Science
Languages : en
Pages : 258

Book Description
This book describes physical, mathematical and experimental methods to model flows in micro- and nanofluidic devices. It takes in consideration flows in channels with a characteristic size between several hundreds of micrometers to several nanometers. Methods based on solving kinetic equations, coupled kinetic-hydrodynamic description, and molecular dynamics method are used. Based on detailed measurements of pressure distributions along the straight and bent microchannels, the hydraulic resistance coefficients are refined. Flows of disperse fluids (including disperse nanofluids) are considered in detail. Results of hydrodynamic modeling of the simplest micromixers are reported. Mixing of fluids in a Y-type and T-type micromixers is considered. The authors present a systematic study of jet flows, jets structure and laminar-turbulent transition. The influence of sound on the microjet structure is considered. New phenomena associated with turbulization and relaminarization of the mixing layer of microjets are discussed. Based on the conducted experimental investigations, the authors propose a chart of microjet flow regimes. When addressing the modeling of microflows of nanofluids, the authors show where conventional hydrodynamic approaches can be applied and where more complicated models are needed, and they analyze the hydrodynamic stability of the nanofluid flows. The last part of the book is devoted the statistical theory of the transport processes in fluids under confined conditions. The authors present the constitutive relations and the formulas for transport coefficients. In conclusion the authors present a rigorous analysis of the viscosity and diffusion in nanochannels and in porous media.

Modelling of Convective Heat and Mass Transfer in Nanofluids with and without Boiling and Condensation

Modelling of Convective Heat and Mass Transfer in Nanofluids with and without Boiling and Condensation PDF Author: Andriy A. Avramenko
Publisher: Springer Nature
ISBN: 3030950816
Category : Technology & Engineering
Languages : en
Pages : 275

Book Description
This book presents step-by-step description of the use of Lie group analysis to find symmetry forms and similarity solutions for single- and two-phase laminar and turbulent flows of nanofluids. It outlines novel and unique analytical solutions validated via comparisons with experimental data. The main part of the book is devoted to analytical modeling of film condensation of still and moving vapor with nanoparticles, stable film boiling of nanofluids, instantaneous unsteady boiling and condensation of nano- and ordinary fluids and clarification and quantification of instability conditions in the vapor layer, as well as centrifugal and Dean instability in nanofluids. It was demonstrated that such complex phenomena can be successfully simulated using the proposed approaches validated via reliable experiments. The book is intended for scientists, engineers, graduate and undergraduate students specializing in the area of engineering thermodynamics, heat and mass transfer and energy systems.

Thermal Performance of Nanofluids in Miniature Heat Sinks with Conduits

Thermal Performance of Nanofluids in Miniature Heat Sinks with Conduits PDF Author: S. Harikrishnan
Publisher: Springer Nature
ISBN: 9811678456
Category : Science
Languages : en
Pages : 105

Book Description
This comprehensive book focuses on the basic physical features and purpose of nanofluids and miniature heat sinks. The contents demonstrate the design modification, fabrication, experimental investigation, and various applications of miniature heat sinks. The book provides context for thermal performance of miniature heat sinks as well as summaries of experimental results correlations that reflect the current technical innovations are included. This book is a useful reference for both academia and industry alike.

Nanofluid in Heat Exchangers for Mechanical Systems

Nanofluid in Heat Exchangers for Mechanical Systems PDF Author: Zhixiong Li
Publisher: Elsevier
ISBN: 0128219246
Category : Technology & Engineering
Languages : en
Pages : 368

Book Description
Nanofluid in Heat Exchanges for Mechanical Systems: Numerical Simulation shows how the finite volume method is used to simulate various applications of heat exchanges. Heat transfer enhancement methods are introduced in detail, along with a hydrothermal analysis and second law approaches for heat exchanges. The melting process in heat exchanges is also covered, as is the influence of variable magnetic fields on the performance of heat exchange. This is an important reference source for materials scientists and mechanical engineers who are looking to understand the main ways that nanofluid flow is simulated and applied in industry. Provides detailed coverage of major models used in nanofluid analysis, including the finite volume method, governing equations for turbulent flow, and equations of nanofluid in presence of variable magnetic field Offers detailed coverage of swirling flow devices and melting processes Assesses which models should be applied in which situations

Convection in Ferro-Nanofluids: Experiments and Theory

Convection in Ferro-Nanofluids: Experiments and Theory PDF Author: Aleksandra A. Bozhko
Publisher: Springer
ISBN: 3319944274
Category : Computers
Languages : en
Pages : 279

Book Description
This book covers the experimental and theoretical study of convection in non-isothermal ferro-nanofluids (FNFs). Since FNFs are not transparent and magnetic fields are very sensitive to the shape of the boundary between magnetic and nonmagnetic media, special flow visualization techniques based on the use of thermo-sensitive liquid crystal films, infrared cameras, as well as local and integral temperature sensors are discussed in the book. This book considers several major configurations of convective chambers and the applied magnetic field. For each of them, the stability boundaries are determined theoretically and experimentally. The physical types of dominant instabilities and the characteristics of their interactions are subsequently established using linear and weakly non-linear hydrodynamic stability analyses and elements of bifurcation theory. The book also discusses the potential of using magnetically controlled ferro-nanofluids as a heat carrier in situations where heat removal by natural convection is not possible due to the lack of gravity (orbital stations) or extreme confinement (microelectronics). Researchers and practitioners working in the areas of fluid mechanics, hydrodynamic stability, and heat and mass transfer will benefit from this book.