Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid Films PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid Films PDF full book. Access full book title Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid Films by Vladimir Novak. Download full books in PDF and EPUB format.

Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid Films

Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid Films PDF Author: Vladimir Novak
Publisher:
ISBN:
Category : Atomization
Languages : en
Pages :

Book Description
An experimental and numerical investigation has been conducted to examine steady, internal, nozzle-generated, gas/liquid mist cooling in vertical channels with ultra-thin, evaporating subcooled liquid films. Interest in this research has been motivated by the need for a highly efficient cooling mechanism in high-power lasers for inertial fusion reactor applications. The aim is to quantify the effects of various operating and design parameters, viz. liquid atomization nozzle design (i.e. spray geometry, droplet size distribution, etc.), heat flux, liquid mass fraction, film thickness, carrier gas velocity, temperature, and humidity, injected liquid temperature, gas/liquid combinations, channel geometry, length, and wettability, and flow direction, on mist cooling effectiveness. A fully-instrumented experimental test facility has been designed and constructed. The facility includes three cylindrical and two rectangular electrically-heated test sections with different unheated entry lengths. Water is used as the mist liquid with air, or helium, as the carrier gas. Three types of mist generating nozzles with significantly different spray characteristics are used. Numerous experiments have been conducted; local heat transfer coefficients along the channels are obtained for a wide range of operating conditions. The data indicate that mist cooling can increase the heat transfer coefficient by more than an order of magnitude compared to forced convection using only the carrier gas. The data obtained in this investigation will allow designers of mist-cooled high heat flux engineering systems to predict their performance over a wide range of design and operating parameters. Comparison has been made between the data and predictions of a modified version of the KIVA-3V code, a mechanistic, three-dimensional computer program for internal, transient, dispersed two-phase flow applications. Good agreement has been obtained for downward mist flow at moderate heat fluxes; at high heat fluxes, the code underpredicts the local heat transfer coefficients and does not predict the onset of film rupture. For upward mist flow, the code underpredicts the local heat transfer coefficients and, contrary to experimental observations, predicts early dryout at the test section exit.

Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid Films

Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid Films PDF Author: Vladimir Novak
Publisher:
ISBN:
Category : Atomization
Languages : en
Pages :

Book Description
An experimental and numerical investigation has been conducted to examine steady, internal, nozzle-generated, gas/liquid mist cooling in vertical channels with ultra-thin, evaporating subcooled liquid films. Interest in this research has been motivated by the need for a highly efficient cooling mechanism in high-power lasers for inertial fusion reactor applications. The aim is to quantify the effects of various operating and design parameters, viz. liquid atomization nozzle design (i.e. spray geometry, droplet size distribution, etc.), heat flux, liquid mass fraction, film thickness, carrier gas velocity, temperature, and humidity, injected liquid temperature, gas/liquid combinations, channel geometry, length, and wettability, and flow direction, on mist cooling effectiveness. A fully-instrumented experimental test facility has been designed and constructed. The facility includes three cylindrical and two rectangular electrically-heated test sections with different unheated entry lengths. Water is used as the mist liquid with air, or helium, as the carrier gas. Three types of mist generating nozzles with significantly different spray characteristics are used. Numerous experiments have been conducted; local heat transfer coefficients along the channels are obtained for a wide range of operating conditions. The data indicate that mist cooling can increase the heat transfer coefficient by more than an order of magnitude compared to forced convection using only the carrier gas. The data obtained in this investigation will allow designers of mist-cooled high heat flux engineering systems to predict their performance over a wide range of design and operating parameters. Comparison has been made between the data and predictions of a modified version of the KIVA-3V code, a mechanistic, three-dimensional computer program for internal, transient, dispersed two-phase flow applications. Good agreement has been obtained for downward mist flow at moderate heat fluxes; at high heat fluxes, the code underpredicts the local heat transfer coefficients and does not predict the onset of film rupture. For upward mist flow, the code underpredicts the local heat transfer coefficients and, contrary to experimental observations, predicts early dryout at the test section exit.

Experimental and Numerical Investigation of Evaporative Spray Cooling for a 45 Degree Bend Near a Gas Turbine Exhaust

Experimental and Numerical Investigation of Evaporative Spray Cooling for a 45 Degree Bend Near a Gas Turbine Exhaust PDF Author: Grant Armitage
Publisher:
ISBN:
Category :
Languages : en
Pages : 292

Book Description
The research performed in this work investigated evaporative spray cooling systems using water near a 45 degree bends in gas turbine exhaust piping systems. Both experimental data and numerical data were generated with the goal of evaluating the ability of Fluent 6.3.26 to predict the performance of these systems for the purpose of design using only modest computational resources. Three cases were investigated in this research: single phase exhaust flow with no water injection, injecting water before the bend and injecting water after the bend. Various probes were used to measure dry bulb temperature, total pressure and water mass flux of the two phase flow at the exit of the pipe. Seven hole probes and pitot static probes were used to measure single phase flow properties. Numerical simulations were performed using mass flow boundary conditions which were generated from experimental results. A turbulence model was selected for the simulations based on comparisons of single phase simulations with experimental data and convergence ability. Using Fluent's discrete phase model, different wall boundary conditions for the discrete phase were used in order to find the model which would best match the evaporation rates of the experimental data. Mass flux values through the exit plane of the pipe were found to be the most reliable of all the two phase data collected. Results from numerical simulations revealed the shortcomings of the available discrete phase wall boundary conditions to accurately predict the interaction of the liquid phase with the wall. Experimental results for both cases showed extensive areas of the wall which had liquid film layers running down the length of the pipe. Simulations resulted in particles either failing to impact the wall and create a liquid film, or creating a liquid film which was much smaller than the film present in experimental results. This led to 8% and 15% discrepancy in evaporation amounts between numerical and experimental results for water injection upstream and downstream of the bend respectively. Under-prediction of areas wetted with a wall film in the simulations also led to gross over predictions of wall temperature in numerical results.

Fluid Property Effects on Spray Cooling

Fluid Property Effects on Spray Cooling PDF Author: Andrea C. Ashwood
Publisher:
ISBN:
Category :
Languages : en
Pages : 144

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 790

Book Description


Experimental Testing and Numerical Modeling of Spray Cooling Under Terrestrial Gravity Conditions

Experimental Testing and Numerical Modeling of Spray Cooling Under Terrestrial Gravity Conditions PDF Author: Kerri Michelle Baysinger
Publisher:
ISBN:
Category : Cooling
Languages : en
Pages : 116

Book Description
Baseline tests were performed for a spray cooling system using subcooled fluid under terrestrial gravity conditions, and a steady state numerical model of the glass heater pedestal assembly was built using ANSYS finite element software. A parametric study was performed to study the effects of volumetric flow rate, heat transfer rate, and orientation with respect to gravity on the experimental system. The numerical model data was compared with the experimental data in order to determine the spray heat transfer coefficient along the top of the heated surface. For a volumetric flow range gal/hr and a heat load range of W, the estimated spray heat transfer coefficient was on the order of W/(m2-K), regardless of heater orientation. In addition, the heat lost due to conduction in the upward-facing heater pedestal was estimated using both experimental and numerical results, and was found to be 1.0 greater or less than (percent of heat loss due to conduction in glass heater pedestal assembly) greater or less than 2.5%.

Applied mechanics reviews

Applied mechanics reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400

Book Description


Thermal Management for Opto-electronics Packaging and Applications

Thermal Management for Opto-electronics Packaging and Applications PDF Author: Xiaobing Luo
Publisher: John Wiley & Sons
ISBN: 1119179297
Category : Technology & Engineering
Languages : en
Pages : 373

Book Description
A systematic guide to the theory, applications, and design of thermal management for LED packaging In Thermal Management for Opto-electronics Packaging and Applications, a team of distinguished engineers and researchers deliver an authoritative discussion of the fundamental theory and practical design required for LED product development. Readers will get a solid grounding in thermal management strategies and find up-to-date coverage of heat transfer fundamentals, thermal modeling, and thermal simulation and design. The authors explain cooling technologies and testing techniques that will help the reader evaluate device performance and accelerate the design and manufacturing cycle. In this all-inclusive guide to LED package thermal management, the book provides the latest advances in thermal engineering design and opto-electronic devices and systems. The book also includes: A thorough introduction to thermal conduction and solutions, including discussions of thermal resistance and high thermal conductivity materials Comprehensive explorations of thermal radiation and solutions, including angular- and spectra-regulation radiative cooling Practical discussions of thermally enhanced thermal interfacial materials (TIMs) Complete treatments of hybrid thermal management in downhole devices Perfect for engineers, researchers, and industry professionals in the fields of LED packaging and heat transfer, Thermal Management for Opto-electronics Packaging and Applications will also benefit advanced students focusing on the design of LED product design.

Heat Transfer 1994

Heat Transfer 1994 PDF Author: G. F. Hewitt
Publisher: CRC Press
ISBN: 9781560323341
Category : Technology & Engineering
Languages : en
Pages : 660

Book Description


Current Engineering Practice

Current Engineering Practice PDF Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 190

Book Description


Science Abstracts

Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1228

Book Description