Author: Jennifer K. E. Steeves
Publisher: Cambridge University Press
ISBN: 1107022622
Category : Computers
Languages : en
Pages : 289
Book Description
This broad exploration of research in plasticity in sensory systems focuses on visual and auditory systems. Topics include visual and visuomotor learning, sensory adaptations as a result of visual loss in childhood, plasticity in the adult visual system, plasticity across the senses, and new techniques in vision recovery, rehabilitation, and sensory substitution.
Plasticity in Sensory Systems
Author: Jennifer K. E. Steeves
Publisher: Cambridge University Press
ISBN: 1107022622
Category : Computers
Languages : en
Pages : 289
Book Description
This broad exploration of research in plasticity in sensory systems focuses on visual and auditory systems. Topics include visual and visuomotor learning, sensory adaptations as a result of visual loss in childhood, plasticity in the adult visual system, plasticity across the senses, and new techniques in vision recovery, rehabilitation, and sensory substitution.
Publisher: Cambridge University Press
ISBN: 1107022622
Category : Computers
Languages : en
Pages : 289
Book Description
This broad exploration of research in plasticity in sensory systems focuses on visual and auditory systems. Topics include visual and visuomotor learning, sensory adaptations as a result of visual loss in childhood, plasticity in the adult visual system, plasticity across the senses, and new techniques in vision recovery, rehabilitation, and sensory substitution.
Neural Circuit and Cognitive Development
Author: Bin Chen
Publisher: Academic Press
ISBN: 0128144122
Category : Psychology
Languages : en
Pages : 670
Book Description
Neural Circuit and Cognitive Development, Second Edition, the latest release in the Comprehensive Developmental Neuroscience series, provides a much-needed update to underscore the latest research in this rapidly evolving field, with new section editors discussing the technological advances that are enabling the pursuit of new research on brain development. This volume is devoted mainly to anatomical and functional development of neural circuits and neural systems and cognitive development. Understanding the critical role these changes play in neurodevelopment provides the ability to explore and elucidate the underlying causes of neurodevelopmental disorders and their effect on cognition. This series is designed to fill the knowledge gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. - Features leading experts in various subfields as section editors and article authors - Presents articles that have been peer reviewed to ensure accuracy, thoroughness and scholarship - Includes coverage of mechanisms that control the assembly of neural circuits in specific regions of the nervous system and multiple aspects of cognitive development
Publisher: Academic Press
ISBN: 0128144122
Category : Psychology
Languages : en
Pages : 670
Book Description
Neural Circuit and Cognitive Development, Second Edition, the latest release in the Comprehensive Developmental Neuroscience series, provides a much-needed update to underscore the latest research in this rapidly evolving field, with new section editors discussing the technological advances that are enabling the pursuit of new research on brain development. This volume is devoted mainly to anatomical and functional development of neural circuits and neural systems and cognitive development. Understanding the critical role these changes play in neurodevelopment provides the ability to explore and elucidate the underlying causes of neurodevelopmental disorders and their effect on cognition. This series is designed to fill the knowledge gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. - Features leading experts in various subfields as section editors and article authors - Presents articles that have been peer reviewed to ensure accuracy, thoroughness and scholarship - Includes coverage of mechanisms that control the assembly of neural circuits in specific regions of the nervous system and multiple aspects of cognitive development
Experience-dependent Plasticity of Layer 2/3 Circuits in Developing Somatosensory Neocortex
Neuroanatomical Tract-Tracing
Author: Laszlo Zaborszky
Publisher: Springer Science & Business Media
ISBN: 0387289429
Category : Medical
Languages : en
Pages : 703
Book Description
The first two editions of this title had a tremendous impact in neuroscience. Between the Second edition in 1989 and today, there has been an explosion of information in the field, including advances in molecular techniques, such as genomics and proteomics, which have become increasing important in neuroscience. A renaissance in fluorescence has occurred, driven by the development of new probes, new microscopes, live imagers, and computer processing. The introduction of new markers has enormously stimulated the field, moving it from tissue culture to neurophysiology to functional MRI techniques.
Publisher: Springer Science & Business Media
ISBN: 0387289429
Category : Medical
Languages : en
Pages : 703
Book Description
The first two editions of this title had a tremendous impact in neuroscience. Between the Second edition in 1989 and today, there has been an explosion of information in the field, including advances in molecular techniques, such as genomics and proteomics, which have become increasing important in neuroscience. A renaissance in fluorescence has occurred, driven by the development of new probes, new microscopes, live imagers, and computer processing. The introduction of new markers has enormously stimulated the field, moving it from tissue culture to neurophysiology to functional MRI techniques.
Neural Circuit Development and Function in the Healthy and Diseased Brain
Author:
Publisher: Academic Press
ISBN: 0123973465
Category : Science
Languages : en
Pages : 849
Book Description
The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 3 offers 40 high level articles devoted mainly to anatomical and functional development of neural circuits and neural systems, as well as those that address neurodevelopmental disorders in humans and experimental organisms. - Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop - Features leading experts in various subfields as Section Editors and article Authors - All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship - Volume 3 sections include coverage of: mechanisms that control the assembly of neural circuits in specific regions of the nervous system, multiple aspects of cognitive development, and disorders of the nervous system arising through defects in neural development
Publisher: Academic Press
ISBN: 0123973465
Category : Science
Languages : en
Pages : 849
Book Description
The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 3 offers 40 high level articles devoted mainly to anatomical and functional development of neural circuits and neural systems, as well as those that address neurodevelopmental disorders in humans and experimental organisms. - Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop - Features leading experts in various subfields as Section Editors and article Authors - All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship - Volume 3 sections include coverage of: mechanisms that control the assembly of neural circuits in specific regions of the nervous system, multiple aspects of cognitive development, and disorders of the nervous system arising through defects in neural development
Synapse Development and Maturation
Author: Pasko Rakic
Publisher: Academic Press
ISBN: 0128236736
Category : Psychology
Languages : en
Pages : 560
Book Description
Synapse Development and Maturation, the latest release in the Comprehensive Developmental Neuroscience series, presents the latest information on the genetic, molecular and cellular mechanisms of neural development. The book provides a much-needed update that underscores the latest research in this rapidly evolving field, with new section editors discussing the technological advances that are enabling the pursuit of new research on brain development. This volume focuses on the synaptogenesis and developmental sequences in the maturation of intrinsic and synapse-driven patterns. - Features leading experts in various subfields as section editors and article authors - Presents articles that have been peer reviewed to ensure accuracy, thoroughness and scholarship - Includes coverage of mechanisms which regulate synapse formation and maintenance during development - Covers neural activity, from cell-intrinsic maturation, to early correlated patterns of activity
Publisher: Academic Press
ISBN: 0128236736
Category : Psychology
Languages : en
Pages : 560
Book Description
Synapse Development and Maturation, the latest release in the Comprehensive Developmental Neuroscience series, presents the latest information on the genetic, molecular and cellular mechanisms of neural development. The book provides a much-needed update that underscores the latest research in this rapidly evolving field, with new section editors discussing the technological advances that are enabling the pursuit of new research on brain development. This volume focuses on the synaptogenesis and developmental sequences in the maturation of intrinsic and synapse-driven patterns. - Features leading experts in various subfields as section editors and article authors - Presents articles that have been peer reviewed to ensure accuracy, thoroughness and scholarship - Includes coverage of mechanisms which regulate synapse formation and maintenance during development - Covers neural activity, from cell-intrinsic maturation, to early correlated patterns of activity
Plasticity of GABAergic Synapses
Author: Andrea Barberis
Publisher: Frontiers Media SA
ISBN: 2889197328
Category : Learning
Languages : en
Pages : 177
Book Description
Learning and memory are believed to depend on plastic changes of neuronal circuits due to activity-dependent potentiation or depression of specific synapses. During the last two decades, plasticity of brain circuits was hypothesized to mainly rely on the flexibility of glutamatergic excitatory synapses, whereas inhibitory synapses were assumed relatively invariant, to ensure stable and reliable control of the neuronal network. As a consequence, while considerable efforts were made to clarify the main mechanisms underlying plasticity at excitatory synapses, the study of the cellular/molecular mechanisms of inhibitory plasticity has received much less attention. Nevertheless, an increasing body of evidence has revealed that inhibitory synapses undergo several types of plasticity at both pre- and postsynaptic levels. Given the crucial role of inhibitory interneurons in shaping network activities, such as generation of oscillations, selection of cell assemblies and signal integration, modifications of the inhibitory synaptic strength represents an extraordinary source of versatility for the fine control of brain states. This versatility also results from the rich diversity of GABAergic neurons in several brain areas, the specific role played by each inhibitory neuron subtype within a given circuit, and the heterogeneity of the properties and modulation of GABAergic synapses formed by specific interneuron classes. The molecular mechanisms underlying the potentiation or depression of inhibitory synapses are now beginning to be unraveled. At the presynaptic level, retrograde synaptic signaling was demonstrated to modulate GABA release, whereas postsynaptic forms of plasticity involve changes in the number/gating properties of GABAA receptors and/or shifts of chloride gradients. In addition, recent research indicates that GABAergic tonic inhibition can also be plastic, adding a further level of complexity to the control of the excitatory/inhibitory balance in the brain. The present Topic will focus on plasticity of GABAergic synapses, with special emphasis on the molecular mechanisms of plasticity induction and/or expression.
Publisher: Frontiers Media SA
ISBN: 2889197328
Category : Learning
Languages : en
Pages : 177
Book Description
Learning and memory are believed to depend on plastic changes of neuronal circuits due to activity-dependent potentiation or depression of specific synapses. During the last two decades, plasticity of brain circuits was hypothesized to mainly rely on the flexibility of glutamatergic excitatory synapses, whereas inhibitory synapses were assumed relatively invariant, to ensure stable and reliable control of the neuronal network. As a consequence, while considerable efforts were made to clarify the main mechanisms underlying plasticity at excitatory synapses, the study of the cellular/molecular mechanisms of inhibitory plasticity has received much less attention. Nevertheless, an increasing body of evidence has revealed that inhibitory synapses undergo several types of plasticity at both pre- and postsynaptic levels. Given the crucial role of inhibitory interneurons in shaping network activities, such as generation of oscillations, selection of cell assemblies and signal integration, modifications of the inhibitory synaptic strength represents an extraordinary source of versatility for the fine control of brain states. This versatility also results from the rich diversity of GABAergic neurons in several brain areas, the specific role played by each inhibitory neuron subtype within a given circuit, and the heterogeneity of the properties and modulation of GABAergic synapses formed by specific interneuron classes. The molecular mechanisms underlying the potentiation or depression of inhibitory synapses are now beginning to be unraveled. At the presynaptic level, retrograde synaptic signaling was demonstrated to modulate GABA release, whereas postsynaptic forms of plasticity involve changes in the number/gating properties of GABAA receptors and/or shifts of chloride gradients. In addition, recent research indicates that GABAergic tonic inhibition can also be plastic, adding a further level of complexity to the control of the excitatory/inhibitory balance in the brain. The present Topic will focus on plasticity of GABAergic synapses, with special emphasis on the molecular mechanisms of plasticity induction and/or expression.
Cortical Function: a View from the Thalamus
Author: V. A. Casagrande
Publisher: Gulf Professional Publishing
ISBN: 9780444516794
Category : Computers
Languages : en
Pages : 328
Book Description
Almost all of the messages that are received by the cerebral cortex from the environment or from the body's internal receptors come through the thalamus and much current thought about perceptual processing is based on sensory pathways that relay in the thalamus. This volume focuses on three major areas: the role of thalamocortical communication in cognition and attention; the role of the thalamus in communication between cortical areas; the hypothesis that much or all of the information relayed by thalamus, even to classical, pure "sensory" areas of cortex, represents a corollary message being sent simultaneously to motor centers. It presents a broad overview of important recent advances in these areas. * Provides a look at brain structures involved in perception and action * Includes summaries by leading investigators in the field * Presents recent advances in our understanding of brain functions
Publisher: Gulf Professional Publishing
ISBN: 9780444516794
Category : Computers
Languages : en
Pages : 328
Book Description
Almost all of the messages that are received by the cerebral cortex from the environment or from the body's internal receptors come through the thalamus and much current thought about perceptual processing is based on sensory pathways that relay in the thalamus. This volume focuses on three major areas: the role of thalamocortical communication in cognition and attention; the role of the thalamus in communication between cortical areas; the hypothesis that much or all of the information relayed by thalamus, even to classical, pure "sensory" areas of cortex, represents a corollary message being sent simultaneously to motor centers. It presents a broad overview of important recent advances in these areas. * Provides a look at brain structures involved in perception and action * Includes summaries by leading investigators in the field * Presents recent advances in our understanding of brain functions
Neural Plasticity in Adult Somatic Sensory-Motor Systems
Author: Ford F. Ebner
Publisher: CRC Press
ISBN: 0203508033
Category : Science
Languages : en
Pages : 311
Book Description
Synthesizing current information about sensory-motor plasticity, Neural Plasticity in Adult Somatic Sensory-Motor Systems provides an up-to-date description of the dynamic processes that occur in somatic sensory-motor cortical circuits or somatic sensory pathways to the cortex due to experience, learning, or damage to the nervous system. The book e
Publisher: CRC Press
ISBN: 0203508033
Category : Science
Languages : en
Pages : 311
Book Description
Synthesizing current information about sensory-motor plasticity, Neural Plasticity in Adult Somatic Sensory-Motor Systems provides an up-to-date description of the dynamic processes that occur in somatic sensory-motor cortical circuits or somatic sensory pathways to the cortex due to experience, learning, or damage to the nervous system. The book e
The Rewiring Brain
Author: Arjen van Ooyen
Publisher: Academic Press
ISBN: 0128038721
Category : Science
Languages : en
Pages : 586
Book Description
The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke. Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders. Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists. - Reviews the current state of knowledge of structural plasticity in the adult brain - Gives a comprehensive overview of computational studies on structural plasticity - Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory - Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage
Publisher: Academic Press
ISBN: 0128038721
Category : Science
Languages : en
Pages : 586
Book Description
The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke. Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders. Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists. - Reviews the current state of knowledge of structural plasticity in the adult brain - Gives a comprehensive overview of computational studies on structural plasticity - Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory - Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage