Droplet Wetting and Evaporation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Droplet Wetting and Evaporation PDF full book. Access full book title Droplet Wetting and Evaporation by David Brutin. Download full books in PDF and EPUB format.

Droplet Wetting and Evaporation

Droplet Wetting and Evaporation PDF Author: David Brutin
Publisher: Academic Press
ISBN: 0128008083
Category : Science
Languages : en
Pages : 464

Book Description
Droplet Wetting and Evaporation provides engineers, students, and researchers with the first comprehensive guide to the theory and applications of droplet wetting and evaporation. Beginning with a relevant theoretical background, the book moves on to consider specific aspects, including heat transfer, flow instabilities, and the drying of complex fluid droplets. Each chapter covers the principles of the subject, addressing corresponding practical issues and problems. The text is ideal for a broad range of domains, from aerospace and materials, to biomedical applications, comprehensively relaying the challenges and approaches from the different communities leading the way in droplet research and development. - Provides a broad, cross-subject coverage of theory and application that is ideal for engineers, students and researchers who need to follow all major developments in this interdisciplinary field - Includes comprehensive discussions of heat transfer, flow instabilities, and the drying of complex fluid droplets - Begins with an accessible summary of fundamental theory before moving on to specific areas such as heat transfer, flow instabilities, and the drying of complex fluid droplets

Droplet Wetting and Evaporation

Droplet Wetting and Evaporation PDF Author: David Brutin
Publisher: Academic Press
ISBN: 0128008083
Category : Science
Languages : en
Pages : 464

Book Description
Droplet Wetting and Evaporation provides engineers, students, and researchers with the first comprehensive guide to the theory and applications of droplet wetting and evaporation. Beginning with a relevant theoretical background, the book moves on to consider specific aspects, including heat transfer, flow instabilities, and the drying of complex fluid droplets. Each chapter covers the principles of the subject, addressing corresponding practical issues and problems. The text is ideal for a broad range of domains, from aerospace and materials, to biomedical applications, comprehensively relaying the challenges and approaches from the different communities leading the way in droplet research and development. - Provides a broad, cross-subject coverage of theory and application that is ideal for engineers, students and researchers who need to follow all major developments in this interdisciplinary field - Includes comprehensive discussions of heat transfer, flow instabilities, and the drying of complex fluid droplets - Begins with an accessible summary of fundamental theory before moving on to specific areas such as heat transfer, flow instabilities, and the drying of complex fluid droplets

Lectures On Phase Transitions And The Renormalization Group

Lectures On Phase Transitions And The Renormalization Group PDF Author: Nigel Goldenfeld
Publisher: CRC Press
ISBN: 0429962045
Category : Science
Languages : en
Pages : 417

Book Description
Covering the elementary aspects of the physics of phases transitions and the renormalization group, this popular book is widely used both for core graduate statistical mechanics courses as well as for more specialized courses. Emphasizing understanding and clarity rather than technical manipulation, these lectures de-mystify the subject and show precisely "how things work." Goldenfeld keeps in mind a reader who wants to understand why things are done, what the results are, and what in principle can go wrong. The book reaches both experimentalists and theorists, students and even active researchers, and assumes only a prior knowledge of statistical mechanics at the introductory graduate level.Advanced, never-before-printed topics on the applications of renormalization group far from equilibrium and to partial differential equations add to the uniqueness of this book.

Drop Dynamics and Dropwise Condensation on Textured Surfaces

Drop Dynamics and Dropwise Condensation on Textured Surfaces PDF Author: Sameer Khandekar
Publisher: Springer
ISBN: 9783030484606
Category : Science
Languages : en
Pages : 452

Book Description
This book is an expanded form of the monograph, Dropwise Condensation on Inclined Textured Surfaces, Springer, 2013, published earlier by the authors, wherein a mathematical model for dropwise condensation of pure vapor over inclined textured surfaces was presented, followed by simulations and comparison with experiments. The model factored in several details of the overall quasi-cyclic process but approximated those at the scale of individual drops. In the last five years, drop level dynamics over hydrophobic surfaces have been extensively studied. These results can now be incorporated in the dropwise condensation model. Dropwise condensation is an efficient route to heat transfer and is often encountered in major power generation applications. Drops are also formed during condensation in distillation devices that work with diverse fluids ranging from water to liquid metals. Design of such equipment requires careful understanding of the condensation cycle, starting from the birth of nuclei, followed by molecular clusters, direct growth of droplets, their coalescence, all the way to instability and fall-off of condensed drops. The model described here considers these individual steps of the condensation cycle. Additional discussions include drop shape determination under static conditions, a fundamental study of drop spreading in sessile and pendant configurations, and the details of the drop coalescence phenomena. These are subsequently incorporated in the condensation model and their consequences are examined. As the mathematical model is spread over multiple scales of length and time, a parallelization approach to simulation is presented. Special topics include three-phase contact line modeling, surface preparation techniques, fundamentals of evaporation and evaporation rates of a single liquid drop, and measurement of heat transfer coefficient during large-scale condensation of water vapor. We hope that this significantly expanded text meets the expectations of design engineers, analysts, and researchers working in areas related to phase-change phenomena and heat transfer.

Surface Wetting

Surface Wetting PDF Author: Kock-Yee Law
Publisher: Springer
ISBN: 3319252143
Category : Technology & Engineering
Languages : en
Pages : 169

Book Description
This book describes wetting fundamentals and reviews the standard protocol for contact angle measurements. The authors include a brief overview of applications of contact angle measurements in surface science and engineering. They also discuss recent advances and research trends in wetting fundamentals and include measurement techniques and data interpretation of contract angles.

Metal Sprays and Spray Deposition

Metal Sprays and Spray Deposition PDF Author: Hani Henein
Publisher: Springer
ISBN: 9783319526874
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
This book describes and illustrates metal spray and spray deposition from the process engineering, metallurgical, and application viewpoints. The authors include step-by-step fundamental information for the metal spray process and detail current engineering developments and applications. They offer industry insight on non-equilibrium solidification processes for yielding stable metal structures and properties.

Self-Cleaning of Surfaces and Water Droplet Mobility

Self-Cleaning of Surfaces and Water Droplet Mobility PDF Author: Bekir Sami Yilbas
Publisher: Elsevier
ISBN: 0128147776
Category : Technology & Engineering
Languages : en
Pages : 456

Book Description
Self-Cleaning of Surfaces and Water Droplet Mobility deals with the self-cleaning of hydrophobic surfaces. Chapters cover the basics of wetting states of fluids and surface characteristics in terms of texture topology and free energy. The self-cleaning aspects of surfaces, such as various synthesizing and fabrication processes are then introduced and discussed, along with environmental dust properties, including elemental compositions, particle sizes and shapes, and their chemo-mechanics characteristics. In addition, mud formation in humid air, as well as ambient and dry mud adhesion on optically transparent surfaces is explored, as is water droplet dynamics on hydrophilic and hydrophobic surfaces, amongst other topics. The book fills the gap between the physical fundamentals of surface energy and texture characteristics for practical applications of surface cleaning and provides a basic understanding of the self-cleaning of surfaces that will be idea for academics, researchers and students. - Showcases the fundamental aspects of the self-cleaning of surfaces - Includes practical applications in energy and other sectors - Contains a review of the characterization of environmental dust on hydrophilic and hydrophobic surfaces - Discusses the fabrication and optimization of surfaces towards self-cleaning - Presents practical applications of the self-cleaning of surfaces via water droplet mobility

Microscale Surface Tension and Its Applications

Microscale Surface Tension and Its Applications PDF Author: Pierre Lambert
Publisher: MDPI
ISBN: 3039215647
Category : Technology & Engineering
Languages : en
Pages : 240

Book Description
Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to: Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems.

Flowing Matter

Flowing Matter PDF Author: Federico Toschi
Publisher: Springer Nature
ISBN: 3030233707
Category : Science
Languages : en
Pages : 313

Book Description
This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.

Dropwise Condensation on Inclined Textured Surfaces

Dropwise Condensation on Inclined Textured Surfaces PDF Author: Sameer Khandekar
Publisher: Springer Science & Business Media
ISBN: 1461484472
Category : Science
Languages : en
Pages : 155

Book Description
Dropwise Condensation on Textured Surfaces presents a holistic framework for understanding dropwise condensation through mathematical modeling and meaningful experiments. The book presents a review of the subject required to build up models as well as to design experiments. Emphasis is placed on the effect of physical and chemical texturing and their effect on the bulk transport phenomena. Application of the model to metal vapor condensation is of special interest. The unique behavior of liquid metals, with their low Prandtl number and high surface tension, is also discussed. The model predicts instantaneous drop size distribution for a given level of substrate subcooling and derives local as well as spatio-temporally averaged heat transfer rates and wall shear stress.

Ice Adhesion

Ice Adhesion PDF Author: K. L. Mittal
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704

Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.