Etude optique du couplage vibroélectronique à l'interface entre boîtes quantiques semiconductrices et molécules organiques PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Etude optique du couplage vibroélectronique à l'interface entre boîtes quantiques semiconductrices et molécules organiques PDF full book. Access full book title Etude optique du couplage vibroélectronique à l'interface entre boîtes quantiques semiconductrices et molécules organiques by Thomas Noblet. Download full books in PDF and EPUB format.

Etude optique du couplage vibroélectronique à l'interface entre boîtes quantiques semiconductrices et molécules organiques

Etude optique du couplage vibroélectronique à l'interface entre boîtes quantiques semiconductrices et molécules organiques PDF Author: Thomas Noblet
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Book Description
Les processus physico-chimiques se produisant au sein des nanoparticules que sont les boîtes quantiques semiconductrices (QDs) sont à l'origine d'une nouvelle classe de sondes fluorescentes trouvant des applications en catalyse, en reconnaissance moléculaire et en imagerie. Le confinement quantique des électrons aux sein de ces objets luminescents, qui donne lieu à leur structure excitonique si particulière, permet de tirer simultanément profit de leurs propriétés optiques d'absorption et d'émission dans la gamme spectrale visible, et ce, dans le but de faciliter la détection et l'identification des espèces chimiques situées dans leur environnement proche. Dans ce contexte, nous nous sommes intéressés à des QDs de 3 à 4 nm de diamètre, composées d'un alliage ternaire de cadmium, de tellure et de soufre, et fonctionnalisées par des ligands mercaptocarboxyliques. De manière à déterminer l'ensemble de leurs propriétés structurales, chimiques et optoélectroniques, nous les avons tout d'abord caractérisées à l'état de solutions colloïdales par diverses techniques expérimentales : microscopie électronique, zêta-métrie, analyse par diffusion dynamique de la lumière, spectroscopies de rayons X, d'absorption UV-visible et d'émission de fluorescence. Ceci nous a permis de déduire la composition chimique des nanocristaux, leur structure cristalline, leur taille, leur dispersion en taille, la composition chimique de leurs ligands, les énergies propres de leurs états électroniques, leur moments dipolaires de transition et leur section efficace d'absorption. Fort de ces connaissances, nous avons pu développer un modèle analytique pour calculer la susceptibilité diélectrique des QDs et extraire de cette manière leur fonction de réponse linéaire, véritable carte d'identité optoélectronique. Nous avons ensuite optimisé la conception par voie chimique d'interfaces composées de QDs et de différentes espèces moléculaires organiques, dépôts réalisés sous forme de monocouches ou de films épais sur des substrats solides plans de silicium, de verre et de fluorure de calcium fonctionnalisés par des organosilanes. Ces interfaces substrat/QDs/molécules ont alors été étudiées par spectroscopie linéaire d'absorption UV-visible et par spectroscopie optique non-linéaire de génération de fréquence-somme (SFG). La première nous a permis de déterminer la densité superficielle des QDs déposés et d'en caractériser la stabilité temporelle, et la seconde, qui combine deux lasers visible et infrarouge, d'identifier la signature vibrationnelle des ligands recouvrant les QDs. Grâce à ces échantillons, nous avons alors montré par spectroscopie SFG deux couleurs l'existence d'un couplage vibroélectronique entre les QDs et leur environnement moléculaire. En particulier, nous avons démontré que l'amplitude de vibration des modes moléculaires associés aux ligands des QDs et aux organosilanes greffés sur les substrats est maximale lorsque les QDs sont eux-mêmes stimulés par la lumière visible dans leur premier état excitonique. Cette démonstration expérimentale s'accompagne par ailleurs d'une démonstration théorique : en utilisant les diagrammes de Feynman dans l'espace des fréquences imaginaires de Matsubara, nous avons déterminé l'expression analytique de la susceptibilité non-linéaire d'ordre 2 du complexe QD/molécule. Nous avons alors vérifié que l'hypothèse d'un couplage dipolaire entre QDs et molécules menait à une modélisation de la réponse vibrationnelle SFG compatible avec les mesures expérimentales. De cette manière, l'existence d'un couplage vibroélectronique de nature dipolaire entre boîtes quantiques et molécules est attesté.

Etude optique du couplage vibroélectronique à l'interface entre boîtes quantiques semiconductrices et molécules organiques

Etude optique du couplage vibroélectronique à l'interface entre boîtes quantiques semiconductrices et molécules organiques PDF Author: Thomas Noblet
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Book Description
Les processus physico-chimiques se produisant au sein des nanoparticules que sont les boîtes quantiques semiconductrices (QDs) sont à l'origine d'une nouvelle classe de sondes fluorescentes trouvant des applications en catalyse, en reconnaissance moléculaire et en imagerie. Le confinement quantique des électrons aux sein de ces objets luminescents, qui donne lieu à leur structure excitonique si particulière, permet de tirer simultanément profit de leurs propriétés optiques d'absorption et d'émission dans la gamme spectrale visible, et ce, dans le but de faciliter la détection et l'identification des espèces chimiques situées dans leur environnement proche. Dans ce contexte, nous nous sommes intéressés à des QDs de 3 à 4 nm de diamètre, composées d'un alliage ternaire de cadmium, de tellure et de soufre, et fonctionnalisées par des ligands mercaptocarboxyliques. De manière à déterminer l'ensemble de leurs propriétés structurales, chimiques et optoélectroniques, nous les avons tout d'abord caractérisées à l'état de solutions colloïdales par diverses techniques expérimentales : microscopie électronique, zêta-métrie, analyse par diffusion dynamique de la lumière, spectroscopies de rayons X, d'absorption UV-visible et d'émission de fluorescence. Ceci nous a permis de déduire la composition chimique des nanocristaux, leur structure cristalline, leur taille, leur dispersion en taille, la composition chimique de leurs ligands, les énergies propres de leurs états électroniques, leur moments dipolaires de transition et leur section efficace d'absorption. Fort de ces connaissances, nous avons pu développer un modèle analytique pour calculer la susceptibilité diélectrique des QDs et extraire de cette manière leur fonction de réponse linéaire, véritable carte d'identité optoélectronique. Nous avons ensuite optimisé la conception par voie chimique d'interfaces composées de QDs et de différentes espèces moléculaires organiques, dépôts réalisés sous forme de monocouches ou de films épais sur des substrats solides plans de silicium, de verre et de fluorure de calcium fonctionnalisés par des organosilanes. Ces interfaces substrat/QDs/molécules ont alors été étudiées par spectroscopie linéaire d'absorption UV-visible et par spectroscopie optique non-linéaire de génération de fréquence-somme (SFG). La première nous a permis de déterminer la densité superficielle des QDs déposés et d'en caractériser la stabilité temporelle, et la seconde, qui combine deux lasers visible et infrarouge, d'identifier la signature vibrationnelle des ligands recouvrant les QDs. Grâce à ces échantillons, nous avons alors montré par spectroscopie SFG deux couleurs l'existence d'un couplage vibroélectronique entre les QDs et leur environnement moléculaire. En particulier, nous avons démontré que l'amplitude de vibration des modes moléculaires associés aux ligands des QDs et aux organosilanes greffés sur les substrats est maximale lorsque les QDs sont eux-mêmes stimulés par la lumière visible dans leur premier état excitonique. Cette démonstration expérimentale s'accompagne par ailleurs d'une démonstration théorique : en utilisant les diagrammes de Feynman dans l'espace des fréquences imaginaires de Matsubara, nous avons déterminé l'expression analytique de la susceptibilité non-linéaire d'ordre 2 du complexe QD/molécule. Nous avons alors vérifié que l'hypothèse d'un couplage dipolaire entre QDs et molécules menait à une modélisation de la réponse vibrationnelle SFG compatible avec les mesures expérimentales. De cette manière, l'existence d'un couplage vibroélectronique de nature dipolaire entre boîtes quantiques et molécules est attesté.

Dynamique de photoluminescence dans les boîtes quantiques auto-assemblées InGaAs/GaAs

Dynamique de photoluminescence dans les boîtes quantiques auto-assemblées InGaAs/GaAs PDF Author: Anouar Jbeli
Publisher:
ISBN:
Category :
Languages : fr
Pages : 161

Book Description
Le présent mémoire est une contribution à l'étude des propriétés électroniques des boîtes quantiques semiconductrices "auto-assemblées" du type InGaAs/GaAs. Les propriétés de spin et les conséquences du couplage électronique entre boîtes sur les propriétés optiques sont étudiées par spectroscopie de photoluminescence résolue en temps à l'échelle picoseconde. L'enregistrement de la dynamique de polarisation linéaire de la photoluminescence réalisée dans des conditions d'excitation strictement résonante sur l'état fondamental les boîtes permet de démontrer le blocage de la relaxation de spin dans ces structures 0D à basse température. La dépendance de la dynamique de polarisation de la photolum- inescence avec la température met d'autre part en évidence le rôle clé joué par la diffusion vers les états excités de trou par interaction avec les phonons LO. Nous avons d'autre part étudié le couplage électronique vertical entre boîtes dans des structures multi-plans avec une épaisseur de barrière variable Les expériences de spectroscopie de photoluminescence résolue en temps réalisés dans des conditions d'excitation non-résonante (dans la barrière) ou strictement résonante sur les niveaux électroniques fondamentaux des boîtes montrent l'efficacité de cette technique pour sonder la délocalisation spatiale des fonctions d'onde liée au couplage électronique. Les conséquences de ce couplage électronique sur les propriétés optiques (décalage spectral, forces d'oscillateur, comportement en température,..) et sur le couplage électron-phonon sont discutés.

Contrôle optique de l'exciton dans des boîtes quantiques individuelles

Contrôle optique de l'exciton dans des boîtes quantiques individuelles PDF Author: Claire-Marie Simon
Publisher:
ISBN:
Category :
Languages : fr
Pages : 244

Book Description
Les boîtes quantiques semiconductrices de type InAs/GaAs ont des proprié- tés électroniques et optiques qui les rapprochent de l'atome unique. C'est dans ce contexte que se situe ce travail de thèse, qui s'intéresse à différents aspects de l'interaction lumière-matière dans ce type de système. Nous avons d'abord étudié le système couplé constitué du spin de l'électron et des spins nucléaires dans une boîte quantique unique, sous excitation non résonante. Pour ces expériences, nous avons utilisé des techniques de photoluminescence stationnaire résolues en polarisation : nous présentons des mesures complètes d'excitation de la photoluminescence, dans différentes conditions expérimentales. L'état de charge des boîtes quantiques fluctuant dans le temps d'une part et le couplage entre les spins nucléaires et le spin de l'électron via l'interaction hyperfine d'autre part sont à la base d'un effet original : il est possible de modifier optiquement les états propres de l'exciton neutre en l'absence de champ magnétique externe. Nos résultats expérimentaux sont confirmés par une spectroscopie de plus haute résolution, qui utilise un interféromètre de Fabry-Pérot placé en amont de la chaîne de détection. Nous présentons ensuite des expériences réalisées en régime cohérent, c'est-à-dire dans un temps plus court que le temps de déphasage du système, dans des échantillons à charge ajustable. Nous avons excité la boîte quantique à résonance (sur son état fondamental) avec des impulsions courtes (durée env. 1ps) limitées par la transformée de Fourier). En s'appuyant sur un schéma de détection original, nous détectons le signal de luminescence sur un état spectateur situé à quelques meV de la transition excitée. Ceci nous a permis de mettre en évidence les oscillations de Rabi de l'exciton dans une boîte quantique unique. Ensuite, en utilisant des impulsions à dérive de fréquence, nous montrons qu'il est possible de générer une population d'exciton de façon à la fois fidèle et robuste, en réalisant un passage adiabatique rapide. Ce résultat expérimental est une première étape en vue de l'implémentation puis de la manipulation d'un Q-bit dans une boîte quantique unique.