16th International Conference on Information Technology-New Generations (ITNG 2019) PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download 16th International Conference on Information Technology-New Generations (ITNG 2019) PDF full book. Access full book title 16th International Conference on Information Technology-New Generations (ITNG 2019) by Shahram Latifi. Download full books in PDF and EPUB format.

16th International Conference on Information Technology-New Generations (ITNG 2019)

16th International Conference on Information Technology-New Generations (ITNG 2019) PDF Author: Shahram Latifi
Publisher: Springer
ISBN: 3030140709
Category : Computers
Languages : en
Pages : 652

Book Description
This 16th International Conference on Information Technology - New Generations (ITNG), continues an annual event focusing on state of the art technologies pertaining to digital information and communications. The applications of advanced information technology to such domains as astronomy, biology, education, geosciences, security and health care are among topics of relevance to ITNG. Visionary ideas, theoretical and experimental results, as well as prototypes, designs, and tools that help the information readily flow to the user are of special interest. Machine Learning, Robotics, High Performance Computing, and Innovative Methods of Computing are examples of related topics. The conference features keynote speakers, the best student award, poster award, service award, a technical open panel, and workshops/exhibits from industry, government and academia.

Design and Analysis of Clinical Trials for Predictive Medicine

Design and Analysis of Clinical Trials for Predictive Medicine PDF Author: Shigeyuki Matsui
Publisher: CRC Press
ISBN: 1466558164
Category : Mathematics
Languages : en
Pages : 394

Book Description
Design and Analysis of Clinical Trials for Predictive Medicine provides statistical guidance on conducting clinical trials for predictive medicine. It covers statistical topics relevant to the main clinical research phases for developing molecular diagnostics and therapeutics-from identifying molecular biomarkers using DNA microarrays to confirming

16th International Conference on Information Technology-New Generations (ITNG 2019)

16th International Conference on Information Technology-New Generations (ITNG 2019) PDF Author: Shahram Latifi
Publisher: Springer
ISBN: 3030140709
Category : Computers
Languages : en
Pages : 652

Book Description
This 16th International Conference on Information Technology - New Generations (ITNG), continues an annual event focusing on state of the art technologies pertaining to digital information and communications. The applications of advanced information technology to such domains as astronomy, biology, education, geosciences, security and health care are among topics of relevance to ITNG. Visionary ideas, theoretical and experimental results, as well as prototypes, designs, and tools that help the information readily flow to the user are of special interest. Machine Learning, Robotics, High Performance Computing, and Innovative Methods of Computing are examples of related topics. The conference features keynote speakers, the best student award, poster award, service award, a technical open panel, and workshops/exhibits from industry, government and academia.

Handbook of Statistics in Clinical Oncology, Third Edition

Handbook of Statistics in Clinical Oncology, Third Edition PDF Author: John Crowley
Publisher: CRC Press
ISBN: 1439862001
Category : Mathematics
Languages : en
Pages : 661

Book Description
Many new challenges have arisen in the area of oncology clinical trials. New cancer therapies are often based on cytostatic or targeted agents, which pose new challenges in the design and analysis of all phases of trials. The literature on adaptive trial designs and early stopping has been exploding. Inclusion of high-dimensional data and imaging techniques have become common practice, and statistical methods on how to analyse such data have been refined in this area. A compilation of statistical topics relevant to these new advances in cancer research, this third edition of Handbook of Statistics in Clinical Oncology focuses on the design and analysis of oncology clinical trials and translational research. Addressing the many challenges that have arisen since the publication of its predecessor, this third edition covers the newest developments involved in the design and analysis of cancer clinical trials, incorporating updates to all four parts: Phase I trials: Updated recommendations regarding the standard 3 + 3 and continual reassessment approaches, along with new chapters on phase 0 trials and phase I trial design for targeted agents. Phase II trials: Updates to current experience in single-arm and randomized phase II trial designs. New chapters include phase II designs with multiple strata and phase II/III designs. Phase III trials: Many new chapters include interim analyses and early stopping considerations, phase III trial designs for targeted agents and for testing the ability of markers, adaptive trial designs, cure rate survival models, statistical methods of imaging, as well as a thorough review of software for the design and analysis of clinical trials. Exploratory and high-dimensional data analyses: All chapters in this part have been thoroughly updated since the last edition. New chapters address methods for analyzing SNP data and for developing a score based on gene expression data. In addition, chapters on risk calculators and forensic bioinformatics have been added. Accessible to statisticians and oncologists interested in clinical trial methodology, the book is a single-source collection of up-to-date statistical approaches to research in clinical oncology.

Advances in Neural Information Processing Systems 15

Advances in Neural Information Processing Systems 15 PDF Author: Suzanna Becker
Publisher: MIT Press
ISBN: 9780262025508
Category : Computers
Languages : en
Pages : 1738

Book Description
Proceedings of the 2002 Neural Information Processing Systems Conference.

High-Dimensional Covariance Estimation

High-Dimensional Covariance Estimation PDF Author: Mohsen Pourahmadi
Publisher: John Wiley & Sons
ISBN: 1118034295
Category : Mathematics
Languages : en
Pages : 204

Book Description
Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

Goodness-of-Fit Tests and Model Validity

Goodness-of-Fit Tests and Model Validity PDF Author: C. Huber-Carol
Publisher: Springer Science & Business Media
ISBN: 1461201039
Category : Mathematics
Languages : en
Pages : 512

Book Description
The 37 expository articles in this volume provide broad coverage of important topics relating to the theory, methods, and applications of goodness-of-fit tests and model validity. The book is divided into eight parts, each of which presents topics written by expert researchers in their areas. Key features include: * state-of-the-art exposition of modern model validity methods, graphical techniques, and computer-intensive methods * systematic presentation with sufficient history and coverage of the fundamentals of the subject * exposure to recent research and a variety of open problems * many interesting real life examples for practitioners * extensive bibliography, with special emphasis on recent literature * subject index This comprehensive reference work will serve the statistical and applied mathematics communities as well as practitioners in the field.

High-dimensional Data Analysis

High-dimensional Data Analysis PDF Author: Tony Cai;Xiaotong Shen
Publisher:
ISBN: 9787894236326
Category :
Languages : en
Pages : 318

Book Description
Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.

Survival Analysis

Survival Analysis PDF Author: John P. Klein
Publisher: Springer Science & Business Media
ISBN: 1475727283
Category : Medical
Languages : en
Pages : 508

Book Description
Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.

Dynamic Regression Models for Survival Data

Dynamic Regression Models for Survival Data PDF Author: Torben Martinussen
Publisher: Springer Science & Business Media
ISBN: 0387339604
Category : Medical
Languages : en
Pages : 471

Book Description
This book studies and applies modern flexible regression models for survival data with a special focus on extensions of the Cox model and alternative models with the aim of describing time-varying effects of explanatory variables. Use of the suggested models and methods is illustrated on real data examples, using the R-package timereg developed by the authors, which is applied throughout the book with worked examples for the data sets.

Statistical Analysis for High-Dimensional Data

Statistical Analysis for High-Dimensional Data PDF Author: Arnoldo Frigessi
Publisher: Springer
ISBN: 3319270990
Category : Mathematics
Languages : en
Pages : 313

Book Description
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.