Author: Nick T. Thomopoulos
Publisher: Springer
ISBN: 3319651129
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines.
Statistical Distributions
Author: Nick T. Thomopoulos
Publisher: Springer
ISBN: 3319651129
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines.
Publisher: Springer
ISBN: 3319651129
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines.
NBS Special Publication
Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 574
Book Description
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 574
Book Description
Computation of Multivariate Normal and t Probabilities
Author: Alan Genz
Publisher: Springer Science & Business Media
ISBN: 3642016898
Category : Computers
Languages : en
Pages : 130
Book Description
Multivariate normal and t probabilities are needed for statistical inference in many applications. Modern statistical computation packages provide functions for the computation of these probabilities for problems with one or two variables. This book describes recently developed methods for accurate and efficient computation of the required probability values for problems with two or more variables. The book discusses methods for specialized problems as well as methods for general problems. The book includes examples that illustrate the probability computations for a variety of applications.
Publisher: Springer Science & Business Media
ISBN: 3642016898
Category : Computers
Languages : en
Pages : 130
Book Description
Multivariate normal and t probabilities are needed for statistical inference in many applications. Modern statistical computation packages provide functions for the computation of these probabilities for problems with one or two variables. This book describes recently developed methods for accurate and efficient computation of the required probability values for problems with two or more variables. The book discusses methods for specialized problems as well as methods for general problems. The book includes examples that illustrate the probability computations for a variety of applications.
Weibull Models
Author: D. N. Prabhakar Murthy
Publisher: John Wiley & Sons
ISBN: 0471473278
Category : Mathematics
Languages : en
Pages : 409
Book Description
A comprehensive perspective on Weibull models The literature on Weibull models is vast, disjointed, andscattered across many different journals. Weibull Models is acomprehensive guide that integrates all the different facets ofWeibull models in a single volume. This book will be of great help to practitioners in reliabilityand other disciplines in the context of modeling data sets usingWeibull models. For researchers interested in these modelingtechniques, exercises at the end of each chapter define potentialtopics for future research. Organized into seven distinct parts, Weibull Models: * Covers model analysis, parameter estimation, model validation,and application * Serves as both a handbook and a research monograph. As ahandbook, it classifies the different models and presents theirproperties. As a research monograph, it unifies the literature andpresents the results in an integrated manner * Intertwines theory and application * Focuses on model identification prior to model parameterestimation * Discusses the usefulness of the Weibull Probability plot (WPP)in the model selection to model a given data set * Highlights the use of Weibull models in reliability theory Filled with in-depth analysis, Weibull Models pulls together themost relevant information on this topic to give everyone fromreliability engineers to applied statisticians involved withreliability and survival analysis a clear look at what Weibullmodels can offer.
Publisher: John Wiley & Sons
ISBN: 0471473278
Category : Mathematics
Languages : en
Pages : 409
Book Description
A comprehensive perspective on Weibull models The literature on Weibull models is vast, disjointed, andscattered across many different journals. Weibull Models is acomprehensive guide that integrates all the different facets ofWeibull models in a single volume. This book will be of great help to practitioners in reliabilityand other disciplines in the context of modeling data sets usingWeibull models. For researchers interested in these modelingtechniques, exercises at the end of each chapter define potentialtopics for future research. Organized into seven distinct parts, Weibull Models: * Covers model analysis, parameter estimation, model validation,and application * Serves as both a handbook and a research monograph. As ahandbook, it classifies the different models and presents theirproperties. As a research monograph, it unifies the literature andpresents the results in an integrated manner * Intertwines theory and application * Focuses on model identification prior to model parameterestimation * Discusses the usefulness of the Weibull Probability plot (WPP)in the model selection to model a given data set * Highlights the use of Weibull models in reliability theory Filled with in-depth analysis, Weibull Models pulls together themost relevant information on this topic to give everyone fromreliability engineers to applied statisticians involved withreliability and survival analysis a clear look at what Weibullmodels can offer.
The Statistical Analysis of Doubly Truncated Data
Author: Jacobo de Uña-Álvarez
Publisher: John Wiley & Sons
ISBN: 1119951372
Category : Medical
Languages : en
Pages : 196
Book Description
A thorough treatment of the statistical methods used to analyze doubly truncated data In The Statistical Analysis of Doubly Truncated Data, an expert team of statisticians delivers an up-to-date review of existing methods used to deal with randomly truncated data, with a focus on the challenging problem of random double truncation. The authors comprehensively introduce doubly truncated data before moving on to discussions of the latest developments in the field. The book offers readers examples with R code along with real data from astronomy, engineering, and the biomedical sciences to illustrate and highlight the methods described within. Linear regression models for doubly truncated responses are provided and the influence of the bandwidth in the performance of kernel-type estimators, as well as guidelines for the selection of the smoothing parameter, are explored. Fully nonparametric and semiparametric estimators are explored and illustrated with real data. R code for reproducing the data examples is also provided. The book also offers: A thorough introduction to the existing methods that deal with randomly truncated data Comprehensive explorations of linear regression models for doubly truncated responses Practical discussions of the influence of bandwidth in the performance of kernel-type estimators and guidelines for the selection of the smoothing parameter In-depth examinations of nonparametric and semiparametric estimators Perfect for statistical professionals with some background in mathematical statistics, biostatisticians, and mathematicians with an interest in survival analysis and epidemiology, The Statistical Analysis of Doubly Truncated Data is also an invaluable addition to the libraries of biomedical scientists and practitioners, as well as postgraduate students studying survival analysis.
Publisher: John Wiley & Sons
ISBN: 1119951372
Category : Medical
Languages : en
Pages : 196
Book Description
A thorough treatment of the statistical methods used to analyze doubly truncated data In The Statistical Analysis of Doubly Truncated Data, an expert team of statisticians delivers an up-to-date review of existing methods used to deal with randomly truncated data, with a focus on the challenging problem of random double truncation. The authors comprehensively introduce doubly truncated data before moving on to discussions of the latest developments in the field. The book offers readers examples with R code along with real data from astronomy, engineering, and the biomedical sciences to illustrate and highlight the methods described within. Linear regression models for doubly truncated responses are provided and the influence of the bandwidth in the performance of kernel-type estimators, as well as guidelines for the selection of the smoothing parameter, are explored. Fully nonparametric and semiparametric estimators are explored and illustrated with real data. R code for reproducing the data examples is also provided. The book also offers: A thorough introduction to the existing methods that deal with randomly truncated data Comprehensive explorations of linear regression models for doubly truncated responses Practical discussions of the influence of bandwidth in the performance of kernel-type estimators and guidelines for the selection of the smoothing parameter In-depth examinations of nonparametric and semiparametric estimators Perfect for statistical professionals with some background in mathematical statistics, biostatisticians, and mathematicians with an interest in survival analysis and epidemiology, The Statistical Analysis of Doubly Truncated Data is also an invaluable addition to the libraries of biomedical scientists and practitioners, as well as postgraduate students studying survival analysis.
Probability Distributions Used in Reliability Engineering
Author: Andrew N O'Connor
Publisher: RIAC
ISBN: 1933904062
Category : Mathematics
Languages : en
Pages : 220
Book Description
The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.
Publisher: RIAC
ISBN: 1933904062
Category : Mathematics
Languages : en
Pages : 220
Book Description
The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.
Advanced Calculus
Author: Wilfred Kaplan
Publisher: Pearson Education India
ISBN: 9788131768570
Category : Calculus
Languages : en
Pages : 480
Book Description
Publisher: Pearson Education India
ISBN: 9788131768570
Category : Calculus
Languages : en
Pages : 480
Book Description
Normal and Student ́s t Distributions and Their Applications
Author: Mohammad Ahsanullah
Publisher: Springer Science & Business Media
ISBN: 9462390614
Category : Mathematics
Languages : en
Pages : 163
Book Description
The most important properties of normal and Student t-distributions are presented. A number of applications of these properties are demonstrated. New related results dealing with the distributions of the sum, product and ratio of the independent normal and Student distributions are presented. The materials will be useful to the advanced undergraduate and graduate students and practitioners in the various fields of science and engineering.
Publisher: Springer Science & Business Media
ISBN: 9462390614
Category : Mathematics
Languages : en
Pages : 163
Book Description
The most important properties of normal and Student t-distributions are presented. A number of applications of these properties are demonstrated. New related results dealing with the distributions of the sum, product and ratio of the independent normal and Student distributions are presented. The materials will be useful to the advanced undergraduate and graduate students and practitioners in the various fields of science and engineering.
A First Course in Bayesian Statistical Methods
Author: Peter D. Hoff
Publisher: Springer Science & Business Media
ISBN: 0387924078
Category : Mathematics
Languages : en
Pages : 270
Book Description
A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.
Publisher: Springer Science & Business Media
ISBN: 0387924078
Category : Mathematics
Languages : en
Pages : 270
Book Description
A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.
Statistical Estimation for Truncated Exponential Families
Author: Masafumi Akahira
Publisher: Springer
ISBN: 9811052964
Category : Mathematics
Languages : en
Pages : 133
Book Description
This book presents new findings on nonregular statistical estimation. Unlike other books on this topic, its major emphasis is on helping readers understand the meaning and implications of both regularity and irregularity through a certain family of distributions. In particular, it focuses on a truncated exponential family of distributions with a natural parameter and truncation parameter as a typical nonregular family. This focus includes the (truncated) Pareto distribution, which is widely used in various fields such as finance, physics, hydrology, geology, astronomy, and other disciplines. The family is essential in that it links both regular and nonregular distributions, as it becomes a regular exponential family if the truncation parameter is known. The emphasis is on presenting new results on the maximum likelihood estimation of a natural parameter or truncation parameter if one of them is a nuisance parameter. In order to obtain more information on the truncation, the Bayesian approach is also considered. Further, the application to some useful truncated distributions is discussed. The illustrated clarification of the nonregular structure provides researchers and practitioners with a solid basis for further research and applications.
Publisher: Springer
ISBN: 9811052964
Category : Mathematics
Languages : en
Pages : 133
Book Description
This book presents new findings on nonregular statistical estimation. Unlike other books on this topic, its major emphasis is on helping readers understand the meaning and implications of both regularity and irregularity through a certain family of distributions. In particular, it focuses on a truncated exponential family of distributions with a natural parameter and truncation parameter as a typical nonregular family. This focus includes the (truncated) Pareto distribution, which is widely used in various fields such as finance, physics, hydrology, geology, astronomy, and other disciplines. The family is essential in that it links both regular and nonregular distributions, as it becomes a regular exponential family if the truncation parameter is known. The emphasis is on presenting new results on the maximum likelihood estimation of a natural parameter or truncation parameter if one of them is a nuisance parameter. In order to obtain more information on the truncation, the Bayesian approach is also considered. Further, the application to some useful truncated distributions is discussed. The illustrated clarification of the nonregular structure provides researchers and practitioners with a solid basis for further research and applications.