Ergodic Theory

Ergodic Theory PDF Author: Manfred Einsiedler
Publisher: Springer Science & Business Media
ISBN: 0857290215
Category : Mathematics
Languages : en
Pages : 486

Book Description
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Dynamical Systems, Ergodic Theory and Applications

Dynamical Systems, Ergodic Theory and Applications PDF Author: L.A. Bunimovich
Publisher: Springer Science & Business Media
ISBN: 9783540663164
Category : Mathematics
Languages : en
Pages : 476

Book Description
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.

Ergodic Dynamics

Ergodic Dynamics PDF Author: Jane Hawkins
Publisher: Springer Nature
ISBN: 3030592421
Category : Mathematics
Languages : en
Pages : 340

Book Description
This textbook provides a broad introduction to the fields of dynamical systems and ergodic theory. Motivated by examples throughout, the author offers readers an approachable entry-point to the dynamics of ergodic systems. Modern and classical applications complement the theory on topics ranging from financial fraud to virus dynamics, offering numerous avenues for further inquiry. Starting with several simple examples of dynamical systems, the book begins by establishing the basics of measurable dynamical systems, attractors, and the ergodic theorems. From here, chapters are modular and can be selected according to interest. Highlights include the Perron–Frobenius theorem, which is presented with proof and applications that include Google PageRank. An in-depth exploration of invariant measures includes ratio sets and type III measurable dynamical systems using the von Neumann factor classification. Topological and measure theoretic entropy are illustrated and compared in detail, with an algorithmic application of entropy used to study the papillomavirus genome. A chapter on complex dynamics introduces Julia sets and proves their ergodicity for certain maps. Cellular automata are explored as a series of case studies in one and two dimensions, including Conway’s Game of Life and latent infections of HIV. Other chapters discuss mixing properties, shift spaces, and toral automorphisms. Ergodic Dynamics unifies topics across ergodic theory, topological dynamics, complex dynamics, and dynamical systems, offering an accessible introduction to the area. Readers across pure and applied mathematics will appreciate the rich illustration of the theory through examples, real-world connections, and vivid color graphics. A solid grounding in measure theory, topology, and complex analysis is assumed; appendices provide a brief review of the essentials from measure theory, functional analysis, and probability.

Dynamical Systems II

Dynamical Systems II PDF Author: Ya G. Sinai
Publisher:
ISBN: 9783662067895
Category :
Languages : en
Pages : 296

Book Description


Eigenvalues, Inequalities, and Ergodic Theory

Eigenvalues, Inequalities, and Ergodic Theory PDF Author: Mufa Chen
Publisher: Springer Science & Business Media
ISBN: 9781852338688
Category : Mathematics
Languages : en
Pages : 258

Book Description
The first and only book to make this research available in the West Concise and accessible: proofs and other technical matters are kept to a minimum to help the non-specialist Each chapter is self-contained to make the book easy-to-use

Aspects of Ergodic, Qualitative and Statistical Theory of Motion

Aspects of Ergodic, Qualitative and Statistical Theory of Motion PDF Author: Giovanni Gallavotti
Publisher: Springer Science & Business Media
ISBN: 9783540408796
Category : Mathematics
Languages : en
Pages : 456

Book Description
Intended for beginners in ergodic theory, this introductory textbook addresses students as well as researchers in mathematical physics. The main novelty is the systematic treatment of characteristic problems in ergodic theory by a unified method in terms of convergent power series and renormalization group methods, in particular. Basic concepts of ergodicity, like Gibbs states, are developed and applied to, e.g., Asonov systems or KAM Theroy. Many examples illustrate the ideas and, in addition, a substantial number of interesting topics are treated in the form of guided problems.

Ergodic Theory via Joinings

Ergodic Theory via Joinings PDF Author: Eli Glasner
Publisher: American Mathematical Soc.
ISBN: 1470419513
Category : Mathematics
Languages : en
Pages : 402

Book Description
This book introduces modern ergodic theory. It emphasizes a new approach that relies on the technique of joining two (or more) dynamical systems. This approach has proved to be fruitful in many recent works, and this is the first time that the entire theory is presented from a joining perspective. Another new feature of the book is the presentation of basic definitions of ergodic theory in terms of the Koopman unitary representation associated with a dynamical system and the invariant mean on matrix coefficients, which exists for any acting groups, amenable or not. Accordingly, the first part of the book treats the ergodic theory for an action of an arbitrary countable group. The second part, which deals with entropy theory, is confined (for the sake of simplicity) to the classical case of a single measure-preserving transformation on a Lebesgue probability space.

Ergodic Theory and Fractal Geometry

Ergodic Theory and Fractal Geometry PDF Author: Hillel Furstenberg
Publisher: American Mathematical Society
ISBN: 1470410346
Category : Mathematics
Languages : en
Pages : 82

Book Description
Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.

Ergodic Theory

Ergodic Theory PDF Author: I. P. Cornfeld
Publisher: Springer Science & Business Media
ISBN: 1461569273
Category : Mathematics
Languages : en
Pages : 487

Book Description
Ergodic theory is one of the few branches of mathematics which has changed radically during the last two decades. Before this period, with a small number of exceptions, ergodic theory dealt primarily with averaging problems and general qualitative questions, while now it is a powerful amalgam of methods used for the analysis of statistical properties of dyna mical systems. For this reason, the problems of ergodic theory now interest not only the mathematician, but also the research worker in physics, biology, chemistry, etc. The outline of this book became clear to us nearly ten years ago but, for various reasons, its writing demanded a long period of time. The main principle, which we adhered to from the beginning, was to develop the approaches and methods or ergodic theory in the study of numerous concrete examples. Because of this, Part I of the book contains the description of various classes of dynamical systems, and their elementary analysis on the basis of the fundamental notions of ergodicity, mixing, and spectra of dynamical systems. Here, as in many other cases, the adjective" elementary" i~ not synonymous with "simple. " Part II is devoted to "abstract ergodic theory. " It includes the construc tion of direct and skew products of dynamical systems, the Rohlin-Halmos lemma, and the theory of special representations of dynamical systems with continuous time. A considerable part deals with entropy.

An Introduction to Ergodic Theory

An Introduction to Ergodic Theory PDF Author: Peter Walters
Publisher: Springer Science & Business Media
ISBN: 9780387951522
Category : Mathematics
Languages : en
Pages : 268

Book Description
The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.