Ergodic Behavior of Markov Processes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ergodic Behavior of Markov Processes PDF full book. Access full book title Ergodic Behavior of Markov Processes by Alexei Kulik. Download full books in PDF and EPUB format.

Ergodic Behavior of Markov Processes

Ergodic Behavior of Markov Processes PDF Author: Alexei Kulik
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110458934
Category : Mathematics
Languages : en
Pages : 268

Book Description
The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and Processes Markov Chains with Discrete State Spaces General Markov Chains: Ergodicity in Total Variation MarkovProcesseswithContinuousTime Weak Ergodic Rates Part II: Limit Theorems The Law of Large Numbers and the Central Limit Theorem Functional Limit Theorems

Ergodic Behavior of Markov Processes

Ergodic Behavior of Markov Processes PDF Author: Alexei Kulik
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110458934
Category : Mathematics
Languages : en
Pages : 268

Book Description
The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and Processes Markov Chains with Discrete State Spaces General Markov Chains: Ergodicity in Total Variation MarkovProcesseswithContinuousTime Weak Ergodic Rates Part II: Limit Theorems The Law of Large Numbers and the Central Limit Theorem Functional Limit Theorems

Markov Chains and Invariant Probabilities

Markov Chains and Invariant Probabilities PDF Author: Onésimo Hernández-Lerma
Publisher: Birkhäuser
ISBN: 3034880243
Category : Mathematics
Languages : en
Pages : 213

Book Description
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).

Markov Chains

Markov Chains PDF Author: Randal Douc
Publisher: Springer
ISBN: 3319977040
Category : Mathematics
Languages : en
Pages : 758

Book Description
This book covers the classical theory of Markov chains on general state-spaces as well as many recent developments. The theoretical results are illustrated by simple examples, many of which are taken from Markov Chain Monte Carlo methods. The book is self-contained, while all the results are carefully and concisely proven. Bibliographical notes are added at the end of each chapter to provide an overview of the literature. Part I lays the foundations of the theory of Markov chain on general states-space. Part II covers the basic theory of irreducible Markov chains on general states-space, relying heavily on regeneration techniques. These two parts can serve as a text on general state-space applied Markov chain theory. Although the choice of topics is quite different from what is usually covered, where most of the emphasis is put on countable state space, a graduate student should be able to read almost all these developments without any mathematical background deeper than that needed to study countable state space (very little measure theory is required). Part III covers advanced topics on the theory of irreducible Markov chains. The emphasis is on geometric and subgeometric convergence rates and also on computable bounds. Some results appeared for a first time in a book and others are original. Part IV are selected topics on Markov chains, covering mostly hot recent developments.

Introduction to Probability

Introduction to Probability PDF Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447

Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Introduction to Ergodic rates for Markov chains and processes

Introduction to Ergodic rates for Markov chains and processes PDF Author: Kulik, Alexei
Publisher: Universitätsverlag Potsdam
ISBN: 3869563389
Category : Mathematics
Languages : en
Pages : 138

Book Description
The present lecture notes aim for an introduction to the ergodic behaviour of Markov Processes and addresses graduate students, post-graduate students and interested readers. Different tools and methods for the study of upper bounds on uniform and weak ergodic rates of Markov Processes are introduced. These techniques are then applied to study limit theorems for functionals of Markov processes. This lecture course originates in two mini courses held at University of Potsdam, Technical University of Berlin and Humboldt University in spring 2013 and Ritsumameikan University in summer 2013. Alexei Kulik, Doctor of Sciences, is a Leading researcher at the Institute of Mathematics of Ukrainian National Academy of Sciences.

Large Deviations for Additive Functionals of Markov Chains

Large Deviations for Additive Functionals of Markov Chains PDF Author: Alejandro D. de Acosta
Publisher: American Mathematical Soc.
ISBN: 0821890891
Category : Mathematics
Languages : en
Pages : 120

Book Description


Ergodicity for Infinite Dimensional Systems

Ergodicity for Infinite Dimensional Systems PDF Author: Giuseppe Da Prato
Publisher: Cambridge University Press
ISBN: 0521579007
Category : Mathematics
Languages : en
Pages : 355

Book Description
This is the only book on stochastic modelling of infinite dimensional dynamical systems.

Markov Processes, Structure and Asymptotic Behavior

Markov Processes, Structure and Asymptotic Behavior PDF Author: Murray Rosenblatt
Publisher: Springer Science & Business Media
ISBN: 3642652387
Category : Mathematics
Languages : en
Pages : 282

Book Description
This book is concerned with a set of related problems in probability theory that are considered in the context of Markov processes. Some of these are natural to consider, especially for Markov processes. Other problems have a broader range of validity but are convenient to pose for Markov processes. The book can be used as the basis for an interesting course on Markov processes or stationary processes. For the most part these questions are considered for discrete parameter processes, although they are also of obvious interest for continuous time parameter processes. This allows one to avoid the delicate measure theoretic questions that might arise in the continuous parameter case. There is an attempt to motivate the material in terms of applications. Many of the topics concern general questions of structure and representation of processes that have not previously been presented in book form. A set of notes comment on the many problems that are still left open and related material in the literature. It is also hoped that the book will be useful as a reference to the reader who would like an introduction to these topics as well as to the reader interested in extending and completing results of this type.

Ergodic Control of Diffusion Processes

Ergodic Control of Diffusion Processes PDF Author: Ari Arapostathis
Publisher: Cambridge University Press
ISBN: 0521768403
Category : Mathematics
Languages : en
Pages : 341

Book Description
The first comprehensive account of controlled diffusions with a focus on ergodic or 'long run average' control.

Non-negative Matrices and Markov Chains

Non-negative Matrices and Markov Chains PDF Author: E. Seneta
Publisher: Springer Science & Business Media
ISBN: 0387327924
Category : Mathematics
Languages : en
Pages : 295

Book Description
Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or another branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book is to relate several aspects of the theory, insofar as this is possible. The author hopes that the book will be useful to mathematicians; but in particular to the workers in applied fields, so the mathematics has been kept as simple as could be managed. The mathematical requisites for reading it are: some knowledge of real-variable theory, and matrix theory; and a little knowledge of complex-variable; the emphasis is on real-variable methods. (There is only one part of the book, the second part of 55.5, which is of rather specialist interest, and requires deeper knowledge.) Appendices provide brief expositions of those areas of mathematics needed which may be less g- erally known to the average reader.