Author:
Publisher:
ISBN:
Category : Military research
Languages : en
Pages : 302
Book Description
Research in Progress
Enzymatic Reactions in Organic Media
Author: Ari Koskinen
Publisher: Springer Science & Business Media
ISBN: 9780751402599
Category : Science
Languages : en
Pages : 338
Book Description
The outlook of organic synthesis has changed many times during its tractable history. The initial focus on the synthesis of substances typical of living matter, exemplified by the first examples of organic chemistry through the synthesis of urea from inorganic substances by Liebig, was accepted as the birth of organic chemistry, and thus also of organic synthesis. Although the early developments in organic synthesis closely followed the pursuit of molecules typical in nature, towards the end of the 19th century, societal pressures placed higher demands on chemical methods appropriate for the emerging age of industrialization. This led to vast amounts of information being generated through the discovery of synthetic reactions, spectroscopic techniques and reaction mechanisms. The basic organic functional group transformations were discovered and improved during the early part of this century. Reaction mechanisms were elucidated at a growing pace, and extremely powerful spectroscopic tools, such as infrared, nuclear magnetic resonance and mass spectrometry were introduced as everyday tools for a practising organic chemist. By the 1950s, many practitioners were ready to agree that almost every molecule could be syn thesized. Some difficult stereochemical problems were exceptions; for example Woodward concluded that erythromycin was a "hopelessly complex target". This frustration led to a hectic phase of development of new and increasingly more ingenious protecting group strategies and functional group transformations, and also saw the emergence of asymmetric synthesis.
Publisher: Springer Science & Business Media
ISBN: 9780751402599
Category : Science
Languages : en
Pages : 338
Book Description
The outlook of organic synthesis has changed many times during its tractable history. The initial focus on the synthesis of substances typical of living matter, exemplified by the first examples of organic chemistry through the synthesis of urea from inorganic substances by Liebig, was accepted as the birth of organic chemistry, and thus also of organic synthesis. Although the early developments in organic synthesis closely followed the pursuit of molecules typical in nature, towards the end of the 19th century, societal pressures placed higher demands on chemical methods appropriate for the emerging age of industrialization. This led to vast amounts of information being generated through the discovery of synthetic reactions, spectroscopic techniques and reaction mechanisms. The basic organic functional group transformations were discovered and improved during the early part of this century. Reaction mechanisms were elucidated at a growing pace, and extremely powerful spectroscopic tools, such as infrared, nuclear magnetic resonance and mass spectrometry were introduced as everyday tools for a practising organic chemist. By the 1950s, many practitioners were ready to agree that almost every molecule could be syn thesized. Some difficult stereochemical problems were exceptions; for example Woodward concluded that erythromycin was a "hopelessly complex target". This frustration led to a hectic phase of development of new and increasingly more ingenious protecting group strategies and functional group transformations, and also saw the emergence of asymmetric synthesis.
The Design of Enzymatic Systems for Catalysis in Organic Solvents
Author: Valerie Mei-lin Reiko Suzawa
Publisher:
ISBN:
Category :
Languages : en
Pages : 286
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 286
Book Description
Organic Synthesis with Enzymes in Non-Aqueous Media
Author: Giacomo Carrea
Publisher: John Wiley & Sons
ISBN: 3527621733
Category : Science
Languages : en
Pages : 328
Book Description
Closing a gap in the literature, this comprehensive book examines and discusses different non-aqueous systems from organic solvents to ionic liquids for synthetic applications, thus opening the door to new successful methods for biocatalytic reactions. It gathers into one handy source the information otherwise widely spread throughout the literature, combining useful background information with a number of synthetic examples, including industrial scale processes for pharmaceutical and fine chemicals. Extremely well structured, the text introduces the fundamentals of non-aqueous enzymology, before going on to new reaction media and synthetic applications using hydrolases and non-hydrolytic enzymes. The one-stop reference for everyone working in this hot field.
Publisher: John Wiley & Sons
ISBN: 3527621733
Category : Science
Languages : en
Pages : 328
Book Description
Closing a gap in the literature, this comprehensive book examines and discusses different non-aqueous systems from organic solvents to ionic liquids for synthetic applications, thus opening the door to new successful methods for biocatalytic reactions. It gathers into one handy source the information otherwise widely spread throughout the literature, combining useful background information with a number of synthetic examples, including industrial scale processes for pharmaceutical and fine chemicals. Extremely well structured, the text introduces the fundamentals of non-aqueous enzymology, before going on to new reaction media and synthetic applications using hydrolases and non-hydrolytic enzymes. The one-stop reference for everyone working in this hot field.
Enzymatic Reactions in Organic Media
Author: A. Koskinen
Publisher: Springer Science & Business Media
ISBN: 9401106118
Category : Science
Languages : en
Pages : 327
Book Description
The outlook of organic synthesis has changed many times during its tractable history. The initial focus on the synthesis of substances typical of living matter, exemplified by the first examples of organic chemistry through the synthesis of urea from inorganic substances by Liebig, was accepted as the birth of organic chemistry, and thus also of organic synthesis. Although the early developments in organic synthesis closely followed the pursuit of molecules typical in nature, towards the end of the 19th century, societal pressures placed higher demands on chemical methods appropriate for the emerging age of industrialization. This led to vast amounts of information being generated through the discovery of synthetic reactions, spectroscopic techniques and reaction mechanisms. The basic organic functional group transformations were discovered and improved during the early part of this century. Reaction mechanisms were elucidated at a growing pace, and extremely powerful spectroscopic tools, such as infrared, nuclear magnetic resonance and mass spectrometry were introduced as everyday tools for a practising organic chemist. By the 1950s, many practitioners were ready to agree that almost every molecule could be syn thesized. Some difficult stereochemical problems were exceptions; for example Woodward concluded that erythromycin was a "hopelessly complex target". This frustration led to a hectic phase of development of new and increasingly more ingenious protecting group strategies and functional group transformations, and also saw the emergence of asymmetric synthesis.
Publisher: Springer Science & Business Media
ISBN: 9401106118
Category : Science
Languages : en
Pages : 327
Book Description
The outlook of organic synthesis has changed many times during its tractable history. The initial focus on the synthesis of substances typical of living matter, exemplified by the first examples of organic chemistry through the synthesis of urea from inorganic substances by Liebig, was accepted as the birth of organic chemistry, and thus also of organic synthesis. Although the early developments in organic synthesis closely followed the pursuit of molecules typical in nature, towards the end of the 19th century, societal pressures placed higher demands on chemical methods appropriate for the emerging age of industrialization. This led to vast amounts of information being generated through the discovery of synthetic reactions, spectroscopic techniques and reaction mechanisms. The basic organic functional group transformations were discovered and improved during the early part of this century. Reaction mechanisms were elucidated at a growing pace, and extremely powerful spectroscopic tools, such as infrared, nuclear magnetic resonance and mass spectrometry were introduced as everyday tools for a practising organic chemist. By the 1950s, many practitioners were ready to agree that almost every molecule could be syn thesized. Some difficult stereochemical problems were exceptions; for example Woodward concluded that erythromycin was a "hopelessly complex target". This frustration led to a hectic phase of development of new and increasingly more ingenious protecting group strategies and functional group transformations, and also saw the emergence of asymmetric synthesis.
Applied Biocatalysis
Author: Harvey W. Blanch
Publisher: CRC Press
ISBN: 9780824785338
Category : Science
Languages : en
Pages : 246
Book Description
Publisher: CRC Press
ISBN: 9780824785338
Category : Science
Languages : en
Pages : 246
Book Description
Biocatalysis in Non-Conventional Media
Author: M.H. Vermuë
Publisher: Elsevier
ISBN: 1483298019
Category : Technology & Engineering
Languages : en
Pages : 782
Book Description
The international symposium "Fundamentals of Biocatalysis in Non-Conventional Media" was organized under auspices of the working party Applied Biocatalysis of the European Federation of Biotechnology. Among the topics discussed at the symposium were physical-chemical aspects such as pH, water-activity, viscosity, dielectric constants, polarity etc. in relation to biocatalysis in non-conventional media. New measuring techniques were introduced.For people working in the field of biocatalysis in non-conventional media this book will give an excellent overview of the gain in understanding over the last five years of the fundamental aspects of biocatalysis in non-conventional media.
Publisher: Elsevier
ISBN: 1483298019
Category : Technology & Engineering
Languages : en
Pages : 782
Book Description
The international symposium "Fundamentals of Biocatalysis in Non-Conventional Media" was organized under auspices of the working party Applied Biocatalysis of the European Federation of Biotechnology. Among the topics discussed at the symposium were physical-chemical aspects such as pH, water-activity, viscosity, dielectric constants, polarity etc. in relation to biocatalysis in non-conventional media. New measuring techniques were introduced.For people working in the field of biocatalysis in non-conventional media this book will give an excellent overview of the gain in understanding over the last five years of the fundamental aspects of biocatalysis in non-conventional media.
Fundamentals of Enzyme Engineering
Author: Young Je Yoo
Publisher: Springer
ISBN: 9402410260
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
This book provides a comprehensive introduction to all aspects of enzyme engineering, from fundamental principles through to the state-of-the-art in research and industrial applications. It begins with a brief history, describing the milestones of advancement in enzyme science and technology, before going on to cover the fundamentals of enzyme chemistry, the biosynthesis of enzymes and their production. Enzyme stability and the reaction kinetics during enzymatic reactions are presented to show how enzymes function during catalysis and the factors that affect their activity. Methods to improve enzyme performance are also presented, such as cofactor regeneration and enzyme immobilization. The book emphasizes and elaborates on the performance and characteristics of enzymes at the molecular level. Finally, the book presents recent advances in enzyme engineering and some key industrial application of enzymes addressing the present needs of society. This book presents essential information not only for undergraduate and graduate students, but also for researchers in academia and industry, providing a valuable reference for the development of commercial applications of enzyme technology.
Publisher: Springer
ISBN: 9402410260
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
This book provides a comprehensive introduction to all aspects of enzyme engineering, from fundamental principles through to the state-of-the-art in research and industrial applications. It begins with a brief history, describing the milestones of advancement in enzyme science and technology, before going on to cover the fundamentals of enzyme chemistry, the biosynthesis of enzymes and their production. Enzyme stability and the reaction kinetics during enzymatic reactions are presented to show how enzymes function during catalysis and the factors that affect their activity. Methods to improve enzyme performance are also presented, such as cofactor regeneration and enzyme immobilization. The book emphasizes and elaborates on the performance and characteristics of enzymes at the molecular level. Finally, the book presents recent advances in enzyme engineering and some key industrial application of enzymes addressing the present needs of society. This book presents essential information not only for undergraduate and graduate students, but also for researchers in academia and industry, providing a valuable reference for the development of commercial applications of enzyme technology.
Enzymatic Transformation
Author: Soundar Divakar
Publisher: Springer Science & Business Media
ISBN: 8132208730
Category : Science
Languages : en
Pages : 300
Book Description
Transformations using enzymes have been extensively investigated in the last two decades and the results promise great potential for this growing field, especially in the area of synthetic organic chemistry mainly due to of its many advantages. Accordingly, this book has attempted to bring out the advantages of using enzymes involving complex underivatized and unprotected substrates in non-polar media under homogenous and heterogeneous reaction conditions. Merits and demerits of using enzymes in terms of yields and selectivity/specificity are presented without any prejudice. Almost all the reactions dealt with are from the author’s laboratory comprising diverse substrates, and the catalysis involves two important hydrolyzing enzymes, extensively examined for the reverse reactions. Thus, esterification involving lipses and glycosylation involving glycosidases were investigated with respect to various strategies like optimization of reaction conditions, response surface methodology and kinetics, carrying out reactions under solvent, non-solvent and super critical carbon dioxide conditions. In short, the work presented is to ensure the comprehension of the problems faced by the researchers in this area so as to work out further efficient strategies for carrying out enzymatic transformations in the laboratory successfully with better yields and specificity.
Publisher: Springer Science & Business Media
ISBN: 8132208730
Category : Science
Languages : en
Pages : 300
Book Description
Transformations using enzymes have been extensively investigated in the last two decades and the results promise great potential for this growing field, especially in the area of synthetic organic chemistry mainly due to of its many advantages. Accordingly, this book has attempted to bring out the advantages of using enzymes involving complex underivatized and unprotected substrates in non-polar media under homogenous and heterogeneous reaction conditions. Merits and demerits of using enzymes in terms of yields and selectivity/specificity are presented without any prejudice. Almost all the reactions dealt with are from the author’s laboratory comprising diverse substrates, and the catalysis involves two important hydrolyzing enzymes, extensively examined for the reverse reactions. Thus, esterification involving lipses and glycosylation involving glycosidases were investigated with respect to various strategies like optimization of reaction conditions, response surface methodology and kinetics, carrying out reactions under solvent, non-solvent and super critical carbon dioxide conditions. In short, the work presented is to ensure the comprehension of the problems faced by the researchers in this area so as to work out further efficient strategies for carrying out enzymatic transformations in the laboratory successfully with better yields and specificity.
Applied Biocatalysis
Author: Adrie J.J. Straathof
Publisher: CRC Press
ISBN: 9789058230232
Category : Medical
Languages : en
Pages : 484
Book Description
Describing the essential steps in the development of biocatalytic processes from concept to completion, this carefully integrated text combines the fundamentals of biocatalysis with technological experience and in-depth commercial case studies. The book starts with an introductory look at the history and present scope of biocatalysis and proceeds to detailed overviews of particular areas of interest. Written by industrial and academic experts, Applied Biocatalysis will be an important addition to the bookshelf for anyone teaching the subject or working in the chemical, food manufacturing or pharmaceutical industries, who is seeking to exploit the potential of biocatalysts.
Publisher: CRC Press
ISBN: 9789058230232
Category : Medical
Languages : en
Pages : 484
Book Description
Describing the essential steps in the development of biocatalytic processes from concept to completion, this carefully integrated text combines the fundamentals of biocatalysis with technological experience and in-depth commercial case studies. The book starts with an introductory look at the history and present scope of biocatalysis and proceeds to detailed overviews of particular areas of interest. Written by industrial and academic experts, Applied Biocatalysis will be an important addition to the bookshelf for anyone teaching the subject or working in the chemical, food manufacturing or pharmaceutical industries, who is seeking to exploit the potential of biocatalysts.