Enhanced Surface Dynamics and Propagation in Molecular Glasses PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Enhanced Surface Dynamics and Propagation in Molecular Glasses PDF full book. Access full book title Enhanced Surface Dynamics and Propagation in Molecular Glasses by Yue Zhang. Download full books in PDF and EPUB format.

Enhanced Surface Dynamics and Propagation in Molecular Glasses

Enhanced Surface Dynamics and Propagation in Molecular Glasses PDF Author: Yue Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Nanometer-sized thin films of small organic molecules are widely used in applications ranging from organic electronics and pharmaceuticals to coatings and nano-imprint lithography. Studies show that properties of these nanometer-sized thin films deviate strongly from their bulk counterparts, possibly due to enhanced surface dynamics and increased surface-to-volume ratio. Developing new techniques that can readily measure the surface dynamics of an organic glass can help understand such phenomena. In this thesis, I will first introduce a novel technique that uses tobacco mosaic virus as the probe particle to directly measure surface diffusion on molecular glasses. The surface diffusion is measured to be greatly enhanced compared to bulk counterpart. The surface diffusion is also investigated on ultrastable glasses and aged glasses with suppressed relaxation dynamics and ultrathin glasses with overall enhanced dynamics. The surface diffusion is found to stay fast and invariant on molecular glasses with varying bulk relaxation dynamics, suggesting that the surface diffusion is decoupled from bulk relaxation dynamics and is only a purely free surface motion. Further, I combine a morphological probe tracking the isothermal dewetting process in ultrathin molecular glasses with cooling-rate dependent glass transition temperature measurements to study the propagation length scale of the surface enhancement effect. Results show that organic glass films with thicknesses of 30 nm or less have dynamics significantly enhanced relative to bulk, induced by the free surface. Furthermore, there is a sharp glass to liquid transition observed around 30 nm, indicating long-range correlated dynamics in ultrathin molecular glasses. While these studies are important for a host of applications, they can also help elucidate the fundamentals of interfacial effects in thin film systems.

Enhanced Surface Dynamics and Propagation in Molecular Glasses

Enhanced Surface Dynamics and Propagation in Molecular Glasses PDF Author: Yue Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Nanometer-sized thin films of small organic molecules are widely used in applications ranging from organic electronics and pharmaceuticals to coatings and nano-imprint lithography. Studies show that properties of these nanometer-sized thin films deviate strongly from their bulk counterparts, possibly due to enhanced surface dynamics and increased surface-to-volume ratio. Developing new techniques that can readily measure the surface dynamics of an organic glass can help understand such phenomena. In this thesis, I will first introduce a novel technique that uses tobacco mosaic virus as the probe particle to directly measure surface diffusion on molecular glasses. The surface diffusion is measured to be greatly enhanced compared to bulk counterpart. The surface diffusion is also investigated on ultrastable glasses and aged glasses with suppressed relaxation dynamics and ultrathin glasses with overall enhanced dynamics. The surface diffusion is found to stay fast and invariant on molecular glasses with varying bulk relaxation dynamics, suggesting that the surface diffusion is decoupled from bulk relaxation dynamics and is only a purely free surface motion. Further, I combine a morphological probe tracking the isothermal dewetting process in ultrathin molecular glasses with cooling-rate dependent glass transition temperature measurements to study the propagation length scale of the surface enhancement effect. Results show that organic glass films with thicknesses of 30 nm or less have dynamics significantly enhanced relative to bulk, induced by the free surface. Furthermore, there is a sharp glass to liquid transition observed around 30 nm, indicating long-range correlated dynamics in ultrathin molecular glasses. While these studies are important for a host of applications, they can also help elucidate the fundamentals of interfacial effects in thin film systems.

C, H, N and O in Si and Characterization and Simulation of Materials and Processes

C, H, N and O in Si and Characterization and Simulation of Materials and Processes PDF Author: A. Borghesi
Publisher: Newnes
ISBN: 044459633X
Category : Technology & Engineering
Languages : en
Pages : 580

Book Description
Containing over 200 papers, this volume contains the proceedings of two symposia in the E-MRS series. Part I presents a state of the art review of the topic - Carbon, Hydrogen, Nitrogen and Oxygen in Silicon and in Other Elemental Semiconductors. There was strong representation from the industrial laboratories, illustrating that the topic is highly relevant for the semiconductor industry. The second part of the volume deals with a topic which is undergoing a process of convergence with two concerns that are more particularly application oriented. Firstly, the advanced instrumentation which, through the use of atomic force and tunnel microscopies, high resolution electron microscopy and other high precision analysis instruments, now allows for direct access to atomic mechanisms. Secondly, the technological development which in all areas of applications, particularly in the field of microelectronics and microsystems, requires as a result of the miniaturisation race, a precise mastery of the microscopic mechanisms.

Molecular Mobility in Deforming Polymer Glasses

Molecular Mobility in Deforming Polymer Glasses PDF Author: Nikhil Padhye
Publisher: Springer Nature
ISBN: 3030825590
Category : Science
Languages : en
Pages : 111

Book Description
This book bridges disparate fields in an exploration of the phenomena and applications surrounding molecular mobility in glassy materials experiencing inelastic deformation. The subjects of plastic deformation and polymer motion/interdiffusion currently belong to the two different fields of continuum mechanics and polymer physics, respectively. However, molecular motion associated with plastic deformation is a key ingredient to gain fundamental understanding, both at the macroscopic and microscopic level. This short monograph provides necessary background in the aforementioned fields before addressing the topic of molecular mobility accompanied by macroscopic inelastic deformation in an accessible and easy-to-understand manner. A new phenomenon of solid-state deformation-induced bonding in polymers is discussed in detail, along with some broad implications in several manufacturing sectors. Open questions pertaining to mechanisms, mechanics, and modeling of deformation-induced bonding in polymers are presented. The book’s clear language and careful explanations will speak to readers of diverse backgrounds.

Atomistic Simulations of Glasses

Atomistic Simulations of Glasses PDF Author: Jincheng Du
Publisher: John Wiley & Sons
ISBN: 1118940245
Category : Technology & Engineering
Languages : en
Pages : 564

Book Description
A complete reference to computer simulations of inorganic glass materials In Atomistic Simulations of Glasses: Fundamentals and Applications, a team of distinguished researchers and active practitioners delivers a comprehensive review of the fundamentals and practical applications of atomistic simulations of inorganic glasses. The book offers concise discussions of classical, first principles, Monte Carlo, and other simulation methods, together with structural analysis techniques and property calculation methods for the models of glass generated from these atomistic simulations, before moving on to practical examples of the application of atomistic simulations in the research of several glass systems. The authors describe simulations of silica, silicate, aluminosilicate, borosilicate, phosphate, halide and oxyhalide glasses with up-to-date information and explore the challenges faced by researchers when dealing with these systems. Both classical and ab initio methods are examined and comparison with experimental structural and property data provided. Simulations of glass surfaces and surface-water reactions are also covered. Atomistic Simulations of Glasses includes multiple case studies and addresses a variety of applications of simulation, from elucidating the structure and properties of glasses for optical, electronic, architecture applications to high technology fields such as flat panel displays, nuclear waste disposal, and biomedicine. The book also includes: A thorough introduction to the fundamentals of atomistic simulations, including classical, ab initio, Reverse Monte Carlo simulation and topological constraint theory methods Important ingredients for simulations such as interatomic potential development, structural analysis methods, and property calculations are covered Comprehensive explorations of the applications of atomistic simulations in glass research, including the history of atomistic simulations of glasses Practical discussions of rare earth and transition metal-containing glasses, as well as halide and oxyhalide glasses In-depth examinations of glass surfaces and silicate glass-water interactions Perfect for glass, ceramic, and materials scientists and engineers, as well as physical, inorganic, and computational chemists, Atomistic Simulations of Glasses: Fundamentals and Applications is also an ideal resource for condensed matter and solid-state physicists, mechanical and civil engineers, and those working with bioactive glasses. Graduate students, postdocs, senior undergraduate students, and others who intend to enter the field of simulations of glasses would also find the book highly valuable.

The dynamics of molecular glasses studied by light scattering

The dynamics of molecular glasses studied by light scattering PDF Author: Sergei Adichtchev
Publisher:
ISBN:
Category :
Languages : en
Pages : 103

Book Description


Molecular Dynamics for Materials Modeling

Molecular Dynamics for Materials Modeling PDF Author: Snehanshu Pal
Publisher: CRC Press
ISBN: 1003859364
Category : Technology & Engineering
Languages : en
Pages : 168

Book Description
The book focuses on the correlation of mechanical behavior with structural evaluation and the underlying mechanisms through molecular dynamics (MD) techniques using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) platform. It provides representative examples of deformation behavior studies carried out using MD simulations through the LAMMPS platform, which provide contributory research findings toward the field of material technology. It also gives a general idea about the architecture of the coding used in LAMMPS and basic information about the syntax. Features: Provides a fundamental understanding of molecular dynamics simulation through LAMMPS Includes training on how to write LAMMPS input file scripts Discusses basics of molecular dynamics and fundamentals of nanoscale deformation behavior Explores molecular statics and Monte Carlo simulation technique Reviews key syntax implemented during simulation runs in LAMMPS, along with their functions This book is focused on researchers and graduate students in materials science, metallurgy, and mechanical engineering.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 500

Book Description


Reviews in Computational Chemistry, Volume 16

Reviews in Computational Chemistry, Volume 16 PDF Author: Kenny B. Lipkowitz
Publisher: John Wiley & Sons
ISBN: 0470126213
Category : Science
Languages : en
Pages : 370

Book Description
Volume 16 Reviews In Computational Chemistry Kenny B. Lipkowitz and Donald B. Boyd The focus of this book is on methods useful in molecular design. Tutorials and reviews span (1) methods for designing compound libraries for combinatorial chemistry and high throughput screening, (2) the workings of artificial neural networks and their use in chemistry, (3) force field methods for modeling materials and designing new substances, and (4) free energy perturbation methods of practical usefulness in ligand design. From Reviews of the Series "This series spans all the subdisciplines in the field, from techniques to practical applications, and includes reviews from many of the acknowledged leaders in the field. the reviews cross many subdisciplines yet are both general enough to be of wide interest while including detailed information of use to workers in particular subdisciplines." -Journal of the American Chemical Society

Finishing of Advanced Ceramics and Glasses

Finishing of Advanced Ceramics and Glasses PDF Author: Robert Sabia
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 384

Book Description


Issues in General Physics Research: 2012 Edition

Issues in General Physics Research: 2012 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1481645331
Category : Science
Languages : en
Pages : 1177

Book Description
Issues in General Physics Research / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Physics Research. The editors have built Issues in General Physics Research: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Physics Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General Physics Research: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.