Endwall Heat Transfer Measurements in a Transonic Turbine Cascade PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Endwall Heat Transfer Measurements in a Transonic Turbine Cascade PDF full book. Access full book title Endwall Heat Transfer Measurements in a Transonic Turbine Cascade by . Download full books in PDF and EPUB format.

Endwall Heat Transfer Measurements in a Transonic Turbine Cascade

Endwall Heat Transfer Measurements in a Transonic Turbine Cascade PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Book Description
Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 10(exp 6), for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.

Endwall Heat Transfer Measurements in a Transonic Turbine Cascade

Endwall Heat Transfer Measurements in a Transonic Turbine Cascade PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Book Description
Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 10(exp 6), for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.

Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade

Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade PDF Author: P. W. Geil
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Book Description
Presented at the International Gas Turbine and Aeroengine Congress & Exhibition Birmingham, UK - June 10-13, 1996.

Blade Heat Transfer Measurements and Prediction in a Transonic Turbine Cascade

Blade Heat Transfer Measurements and Prediction in a Transonic Turbine Cascade PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Book Description


Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892

Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Research & Technology 1999

Research & Technology 1999 PDF Author:
Publisher: DIANE Publishing
ISBN: 142891823X
Category :
Languages : en
Pages : 195

Book Description


Axial Turbine Aerodynamics for Aero-engines

Axial Turbine Aerodynamics for Aero-engines PDF Author: Zhengping Zou
Publisher: Springer
ISBN: 9811057508
Category : Technology & Engineering
Languages : en
Pages : 572

Book Description
This book is a monograph on aerodynamics of aero-engine gas turbines focusing on the new progresses on flow mechanism and design methods in the recent 20 years. Starting with basic principles in aerodynamics and thermodynamics, this book systematically expounds the recent research on mechanisms of flows in axial gas turbines, including high pressure and low pressure turbines, inter-turbine ducts and turbine rear frame ducts, and introduces the classical and innovative numerical evaluation methods in different dimensions. This book also summarizes the latest research achievements in the field of gas turbine aerodynamic design and flow control, and the multidisciplinary conjugate problems involved with gas turbines. This book should be helpful for scientific and technical staffs, college teachers, graduate students, and senior college students, who are involved in research and design of gas turbines.

Advances in Materials Sciences, Energy Technology and Environmental Engineering

Advances in Materials Sciences, Energy Technology and Environmental Engineering PDF Author: Aragona Patty
Publisher: CRC Press
ISBN: 1351851950
Category : Science
Languages : en
Pages : 473

Book Description
The 2016 International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2016) took place May 28-29, 2016 in Zhuhai City, China. MSETEE 2016 brought together academics and industrial experts in the field of materials science, energy technology and environmental engineering. The primary goal of the conference was to promote research and developmental activities in these research areas and to promote scientific information interchange between researchers, developers, engineers, students, and practitioners working around the world. The conference will be held every year serving as platform for researchers to share views and experience in materials science, energy technology and environmental engineering and related areas.

Applied mechanics reviews

Applied mechanics reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400

Book Description


Flow Visualization

Flow Visualization PDF Author: Alexander J. Smits
Publisher: World Scientific
ISBN: 184816792X
Category : Technology & Engineering
Languages : en
Pages : 442

Book Description
This is the 2nd edition of the book, Flow Visualization: Techniques and Examples, which was published by Imperial College Press in 2000. Many of the chapters have been revised and updated to take into consideration recent changes in a number of flow visualization and measurement techniques, including an updated high quality flow gallery. Unique among similar publications, this book focuses on the practical rather than theoretical aspects. Obtaining high quality flow visualization results is, in many ways, more of an art than a science, and experience plays a key deciding role. The depth and breadth of the material will make this book invaluable to readers of all levels of experience in the field.

Infrared Thermography for Thermo-Fluid-Dynamics

Infrared Thermography for Thermo-Fluid-Dynamics PDF Author: Tommaso Astarita
Publisher: Springer Science & Business Media
ISBN: 3642295088
Category : Technology & Engineering
Languages : en
Pages : 237

Book Description
Infrared thermography is a measurement technique that enables to obtain non intrusive measurements of surface temperatures. One of the interesting features of this technique is its ability to measure a full two dimensional map of the surface temperature and for this reason it has been widely used as a flow visualization technique. Since the temperature measurements can be extremely accurate it is possible, by using a heat flux sensor, also to measure convective heat transfer coefficient distributions on a surface making the technique de facto quantitative. This book, starting from the basic theory of infrared thermography and heat flux sensor guides, both the experienced researcher and the young student, in the correct application of this powerful technique to various practical problems. A significant number of examples and applications are also examined in detail.