Author: Edward K. Blum
Publisher: World Scientific
ISBN: 981256621X
Category : Mathematics
Languages : en
Pages : 500
Book Description
Aimed at scientists and engineers, this book is an exciting intellectual journey through the mathematical worlds of Euclid, Newton, Maxwell, Einstein, and Schrodinger-Dirac.While similar books present the required mathematics in a piecemeal manner with tangential references to the relevant physics and engineering, this textbook serves the interdisciplinary needs of engineers, scientists and applied mathematicians by unifying the mathematics and physics into a single systematic body of knowledge but preserving the rigorous logical development of the mathematics.The authors take an unconventional approach by integrating the mathematics with its motivating physical phenomena and, conversely, by showing how the mathematical models predict new physical phenomena.
Mathematics of Physics and Engineering
Author: Edward K. Blum
Publisher: World Scientific
ISBN: 981256621X
Category : Mathematics
Languages : en
Pages : 500
Book Description
Aimed at scientists and engineers, this book is an exciting intellectual journey through the mathematical worlds of Euclid, Newton, Maxwell, Einstein, and Schrodinger-Dirac.While similar books present the required mathematics in a piecemeal manner with tangential references to the relevant physics and engineering, this textbook serves the interdisciplinary needs of engineers, scientists and applied mathematicians by unifying the mathematics and physics into a single systematic body of knowledge but preserving the rigorous logical development of the mathematics.The authors take an unconventional approach by integrating the mathematics with its motivating physical phenomena and, conversely, by showing how the mathematical models predict new physical phenomena.
Publisher: World Scientific
ISBN: 981256621X
Category : Mathematics
Languages : en
Pages : 500
Book Description
Aimed at scientists and engineers, this book is an exciting intellectual journey through the mathematical worlds of Euclid, Newton, Maxwell, Einstein, and Schrodinger-Dirac.While similar books present the required mathematics in a piecemeal manner with tangential references to the relevant physics and engineering, this textbook serves the interdisciplinary needs of engineers, scientists and applied mathematicians by unifying the mathematics and physics into a single systematic body of knowledge but preserving the rigorous logical development of the mathematics.The authors take an unconventional approach by integrating the mathematics with its motivating physical phenomena and, conversely, by showing how the mathematical models predict new physical phenomena.
The Elements of Complex Analysis
Author: B. Choudhary
Publisher: New Age International
ISBN: 9788122403992
Category : Mathematics
Languages : en
Pages : 352
Book Description
This Book Is Intended To Be A Simple And Easy Introduction To The Subject. It Is Meant As A Textbook For A Course In Complex Analysis At Postgraduate Level Of Indian Universities.Some Of The Welcome Features Of The Book Are: Proofs And Motivation For The Theory: Examples Are Provided To Illustrate The Concepts; Exercises Of Various Levels Of Difficulty Are Given At The End Of Every Chapter: Keeping In View The Applied Nature Of The Subject, Ordinary Linear Homogeneous Differential Equations Of The Second Order And Conformal Mapping And Its Applications Are Given More Attention Than Most Other Books: Uniform Approximation And Elliptic Functions Are Treated In Great Detail; There Is Also A Detailed Treatment Of Harmonic Functions, Weierstrass Approximation Theorem, Analytic Continuation, Riemann Mapping Theorem, Homological Version OfCauchys Theorem And Its Applications; Diagrams Are Provided Whenever Feasible To Help The Reader Develop Skill In Using Imagination To Visualise Abstract Ideas; Solutions To Some Selected Exercises Which Involve Lot Of New Ideas And Theoretical Considerations Have Been Provided At The End.
Publisher: New Age International
ISBN: 9788122403992
Category : Mathematics
Languages : en
Pages : 352
Book Description
This Book Is Intended To Be A Simple And Easy Introduction To The Subject. It Is Meant As A Textbook For A Course In Complex Analysis At Postgraduate Level Of Indian Universities.Some Of The Welcome Features Of The Book Are: Proofs And Motivation For The Theory: Examples Are Provided To Illustrate The Concepts; Exercises Of Various Levels Of Difficulty Are Given At The End Of Every Chapter: Keeping In View The Applied Nature Of The Subject, Ordinary Linear Homogeneous Differential Equations Of The Second Order And Conformal Mapping And Its Applications Are Given More Attention Than Most Other Books: Uniform Approximation And Elliptic Functions Are Treated In Great Detail; There Is Also A Detailed Treatment Of Harmonic Functions, Weierstrass Approximation Theorem, Analytic Continuation, Riemann Mapping Theorem, Homological Version OfCauchys Theorem And Its Applications; Diagrams Are Provided Whenever Feasible To Help The Reader Develop Skill In Using Imagination To Visualise Abstract Ideas; Solutions To Some Selected Exercises Which Involve Lot Of New Ideas And Theoretical Considerations Have Been Provided At The End.
Complex Analysis
Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831156
Category : Mathematics
Languages : en
Pages : 398
Book Description
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Publisher: Princeton University Press
ISBN: 1400831156
Category : Mathematics
Languages : en
Pages : 398
Book Description
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Elementary Theory of Analytic Functions of One or Several Complex Variables
Author: Henri Cartan
Publisher: Courier Corporation
ISBN: 0486318672
Category : Mathematics
Languages : en
Pages : 242
Book Description
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Publisher: Courier Corporation
ISBN: 0486318672
Category : Mathematics
Languages : en
Pages : 242
Book Description
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Elements of Complex Variables
Elements of Complex Analysis
Author:
Publisher: Academic Publishers
ISBN: 9788187504863
Category :
Languages : en
Pages : 124
Book Description
Publisher: Academic Publishers
ISBN: 9788187504863
Category :
Languages : en
Pages : 124
Book Description
Complex Analysis
Author: D.H. Luecking
Publisher: Springer Science & Business Media
ISBN: 1461382955
Category : Mathematics
Languages : en
Pages : 184
Book Description
The main idea of this book is to present a good portion of the standard material on functions of a complex variable, as well as some new material, from the point of view of functional analysis. The main object of study is the algebra H(G) of all holomorphic functions on the open set G, with the topology on H(G) of uniform convergence on compact subsets of G. From this point of vie~, the main theorem of the theory is Theorem 9.5, which concretely identifies the dual of H(G) with the space of germs of holomorphic functions on the complement of G. From this result, for example, Runge's approximation theorem and the global Cauchy integral theorem follow in a few short steps. Other consequences of this duality theorem are the Germay interpolation theorem and the Mittag-Leffler Theorem. The approach via duality is entirely consistent with Cauchy's approach to complex variables, since curvilinear integrals are typical examples of linear functionals. The prerequisite for the book is a one-semester course in com plex variables at the undergraduate-graduate level, so that the elements of the local theory are supposed known. In particular, the Cauchy Theorem for the square and the circle are assumed, but not the global Cauchy Theorem in any of its forms. The second author has three times taught a graduate course based on this material at the University of Illinois, with good results.
Publisher: Springer Science & Business Media
ISBN: 1461382955
Category : Mathematics
Languages : en
Pages : 184
Book Description
The main idea of this book is to present a good portion of the standard material on functions of a complex variable, as well as some new material, from the point of view of functional analysis. The main object of study is the algebra H(G) of all holomorphic functions on the open set G, with the topology on H(G) of uniform convergence on compact subsets of G. From this point of vie~, the main theorem of the theory is Theorem 9.5, which concretely identifies the dual of H(G) with the space of germs of holomorphic functions on the complement of G. From this result, for example, Runge's approximation theorem and the global Cauchy integral theorem follow in a few short steps. Other consequences of this duality theorem are the Germay interpolation theorem and the Mittag-Leffler Theorem. The approach via duality is entirely consistent with Cauchy's approach to complex variables, since curvilinear integrals are typical examples of linear functionals. The prerequisite for the book is a one-semester course in com plex variables at the undergraduate-graduate level, so that the elements of the local theory are supposed known. In particular, the Cauchy Theorem for the square and the circle are assumed, but not the global Cauchy Theorem in any of its forms. The second author has three times taught a graduate course based on this material at the University of Illinois, with good results.
Visual Complex Analysis
Author: Tristan Needham
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Complex Analysis through Examples and Exercises
Author: E. Pap
Publisher: Springer Science & Business Media
ISBN: 9401711062
Category : Mathematics
Languages : en
Pages : 344
Book Description
The book Complex Analysis through Examples and Exercises has come out from the lectures and exercises that the author held mostly for mathematician and physists . The book is an attempt to present the rat her involved subject of complex analysis through an active approach by the reader. Thus this book is a complex combination of theory and examples. Complex analysis is involved in all branches of mathematics. It often happens that the complex analysis is the shortest path for solving a problem in real circum stances. We are using the (Cauchy) integral approach and the (Weierstrass) power se ries approach . In the theory of complex analysis, on the hand one has an interplay of several mathematical disciplines, while on the other various methods, tools, and approaches. In view of that, the exposition of new notions and methods in our book is taken step by step. A minimal amount of expository theory is included at the beinning of each section, the Preliminaries, with maximum effort placed on weil selected examples and exercises capturing the essence of the material. Actually, I have divided the problems into two classes called Examples and Exercises (some of them often also contain proofs of the statements from the Preliminaries). The examples contain complete solutions and serve as a model for solving similar problems given in the exercises. The readers are left to find the solution in the exercisesj the answers, and, occasionally, some hints, are still given.
Publisher: Springer Science & Business Media
ISBN: 9401711062
Category : Mathematics
Languages : en
Pages : 344
Book Description
The book Complex Analysis through Examples and Exercises has come out from the lectures and exercises that the author held mostly for mathematician and physists . The book is an attempt to present the rat her involved subject of complex analysis through an active approach by the reader. Thus this book is a complex combination of theory and examples. Complex analysis is involved in all branches of mathematics. It often happens that the complex analysis is the shortest path for solving a problem in real circum stances. We are using the (Cauchy) integral approach and the (Weierstrass) power se ries approach . In the theory of complex analysis, on the hand one has an interplay of several mathematical disciplines, while on the other various methods, tools, and approaches. In view of that, the exposition of new notions and methods in our book is taken step by step. A minimal amount of expository theory is included at the beinning of each section, the Preliminaries, with maximum effort placed on weil selected examples and exercises capturing the essence of the material. Actually, I have divided the problems into two classes called Examples and Exercises (some of them often also contain proofs of the statements from the Preliminaries). The examples contain complete solutions and serve as a model for solving similar problems given in the exercises. The readers are left to find the solution in the exercisesj the answers, and, occasionally, some hints, are still given.
An Introduction to Complex Analysis
Author: Ravi P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 146140195X
Category : Mathematics
Languages : en
Pages : 345
Book Description
This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.
Publisher: Springer Science & Business Media
ISBN: 146140195X
Category : Mathematics
Languages : en
Pages : 345
Book Description
This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.