Author: Nathan Fellowes Dupuis
Publisher: London : Macmillan
ISBN:
Category : History
Languages : en
Pages : 370
Book Description
Elementary Synthetic Geometry of the Point, Line and Circle in the Plane by Nathan Fellowes Dupuis, first published in 1889, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it.
Elementary Synthetic Geometry of the Point, Line and Circle in the Plane
Author: Nathan Fellowes Dupuis
Publisher: London : Macmillan
ISBN:
Category : History
Languages : en
Pages : 370
Book Description
Elementary Synthetic Geometry of the Point, Line and Circle in the Plane by Nathan Fellowes Dupuis, first published in 1889, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it.
Publisher: London : Macmillan
ISBN:
Category : History
Languages : en
Pages : 370
Book Description
Elementary Synthetic Geometry of the Point, Line and Circle in the Plane by Nathan Fellowes Dupuis, first published in 1889, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it.
An Elementary Course in Synthetic Projective Geometry
Author: Derrick Norman Lehmer
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 152
Book Description
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 152
Book Description
Elementary Synthetic Geometry
Author: George Bruce Halsted
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 208
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 208
Book Description
Elementary Synthetic Geometry
Author: George Bruce Halsted
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 204
Book Description
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 204
Book Description
Elementary Geometry
Author: Ilka Agricola
Publisher: American Mathematical Soc.
ISBN: 0821843478
Category : Mathematics
Languages : en
Pages : 257
Book Description
Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries.
Publisher: American Mathematical Soc.
ISBN: 0821843478
Category : Mathematics
Languages : en
Pages : 257
Book Description
Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries.
Kiselev's Geometry
Author: Andreĭ Petrovich Kiselev
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
The Four Pillars of Geometry
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Euclidean Plane and Its Relatives
Author: Anton Petrunin
Publisher:
ISBN: 9781537649511
Category :
Languages : en
Pages : 192
Book Description
The book grew from my lecture notes. It is designed for a semester-long course in Foundations of Geometry and meant to be rigorous, conservative, elementary and minimalistic.
Publisher:
ISBN: 9781537649511
Category :
Languages : en
Pages : 192
Book Description
The book grew from my lecture notes. It is designed for a semester-long course in Foundations of Geometry and meant to be rigorous, conservative, elementary and minimalistic.
Synthetic Geometry of Manifolds
Author: Anders Kock
Publisher: Cambridge University Press
ISBN: 0521116732
Category : Mathematics
Languages : en
Pages : 317
Book Description
This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field.
Publisher: Cambridge University Press
ISBN: 0521116732
Category : Mathematics
Languages : en
Pages : 317
Book Description
This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field.
Basic Concepts of Synthetic Differential Geometry
Author: R. Lavendhomme
Publisher: Springer Science & Business Media
ISBN: 1475745885
Category : Mathematics
Languages : en
Pages : 331
Book Description
Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.
Publisher: Springer Science & Business Media
ISBN: 1475745885
Category : Mathematics
Languages : en
Pages : 331
Book Description
Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.