Author: Lawrence S. Pan
Publisher: Springer Science & Business Media
ISBN: 1461522579
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
The use of diamond for electronic applications is not a new idea. As early as the 1920's diamonds were considered for their use as photoconductive detectors. However limitations in size and control of properties naturally limited the use of diamond to a few specialty applications. With the development of diamond synthesis from the vapor phase has come a more serious interest in developing diamond-based electronic devices. A unique combination of extreme properties makes diamond partiCularly well suited for high speed, high power, and high temperature applications. Vapor phase deposition of diamond allows large area films to be deposited, whose properties can potentially be controlled. Since the process of diamond synthesis was first realized, great progress have been made in understanding the issues important for growing diamond and fabricating electronic devices. The quality of both intrinsic and doped diamond has improved greatly to the point that viable applications are being developed. Our understanding of the properties and limitations has also improved greatly. While a number of excellent references review the general properties of diamond, this volume summarizes the great deal of literature related only to electronic properties and applications of diamond. We concentrate only on diamond; related materials such as diamond-like carbon (DLC) and other wide bandgap semiconductors are not treated here. In the first chapter Profs. C. Y. Fong and B. M. Klein discuss the band structure of single-crystal diamond and its relation to electronic properties.
Diamond: Electronic Properties and Applications
Author: Lawrence S. Pan
Publisher: Springer Science & Business Media
ISBN: 1461522579
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
The use of diamond for electronic applications is not a new idea. As early as the 1920's diamonds were considered for their use as photoconductive detectors. However limitations in size and control of properties naturally limited the use of diamond to a few specialty applications. With the development of diamond synthesis from the vapor phase has come a more serious interest in developing diamond-based electronic devices. A unique combination of extreme properties makes diamond partiCularly well suited for high speed, high power, and high temperature applications. Vapor phase deposition of diamond allows large area films to be deposited, whose properties can potentially be controlled. Since the process of diamond synthesis was first realized, great progress have been made in understanding the issues important for growing diamond and fabricating electronic devices. The quality of both intrinsic and doped diamond has improved greatly to the point that viable applications are being developed. Our understanding of the properties and limitations has also improved greatly. While a number of excellent references review the general properties of diamond, this volume summarizes the great deal of literature related only to electronic properties and applications of diamond. We concentrate only on diamond; related materials such as diamond-like carbon (DLC) and other wide bandgap semiconductors are not treated here. In the first chapter Profs. C. Y. Fong and B. M. Klein discuss the band structure of single-crystal diamond and its relation to electronic properties.
Publisher: Springer Science & Business Media
ISBN: 1461522579
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
The use of diamond for electronic applications is not a new idea. As early as the 1920's diamonds were considered for their use as photoconductive detectors. However limitations in size and control of properties naturally limited the use of diamond to a few specialty applications. With the development of diamond synthesis from the vapor phase has come a more serious interest in developing diamond-based electronic devices. A unique combination of extreme properties makes diamond partiCularly well suited for high speed, high power, and high temperature applications. Vapor phase deposition of diamond allows large area films to be deposited, whose properties can potentially be controlled. Since the process of diamond synthesis was first realized, great progress have been made in understanding the issues important for growing diamond and fabricating electronic devices. The quality of both intrinsic and doped diamond has improved greatly to the point that viable applications are being developed. Our understanding of the properties and limitations has also improved greatly. While a number of excellent references review the general properties of diamond, this volume summarizes the great deal of literature related only to electronic properties and applications of diamond. We concentrate only on diamond; related materials such as diamond-like carbon (DLC) and other wide bandgap semiconductors are not treated here. In the first chapter Profs. C. Y. Fong and B. M. Klein discuss the band structure of single-crystal diamond and its relation to electronic properties.
The Physics of Diamond
Author: Società italiana di fisica
Publisher: IOS Press
ISBN: 1614992207
Category : Science
Languages : en
Pages : 635
Book Description
Diamond is an extreme material among possible atomic aggregations in nature, and as such has many extreme properties. This unique position makes it a fascinating subject both for science and for applications. This has been particularly true in recent years, since the surprising discovery at Union Carbide (1953) of the possibility of chemical vapour deposition of diamond films at low pressures, where diamond is metastable with respect to graphite. This discovery cleared the way to the development of economical deposition techniques that have been obtaining progressively better-quality diamond, both pure and doped, in a controlled way and for a variety of applications. The remarkable properties and applications range from mechanical (the extreme hardness, tensile and compressive strength, wear performance) to thermal (the highest conductivity), optical (wide range of transparency), chemical (inertness to most chemicals), biological (biocompatibility) and electronic (high electronic carrier mobility, large band gap and dielectric breakdown strength, negative electron affinity), with the simultaneous presence of so many extraordinary qualities often resulting in added value for a given application.We are presently at a turning point in the development of diamond physics and applications. While some achievements can be considered well established, on the other hand, new opportunities and challenges are facing the scientific community, particularly with regard to novel exciting deposition processes and techniques or new properties and applications in electronics. This Enrico Fermi Course on "The Physics of Diamond" is particularly focused on the new developments and prospects, which may well constitute a reference point for a new generation of scientists at what may possibly be the beginning of a new age in diamond. The course attracted several of the most distinguished experts in the field as lecturers and an audience of almost as distinguished students and observers from 19 countries. Participation and discussions were lively to the very last day, ranging from traditional diamond physics to new diamond physics, and from well-known applications to the new exciting opportunities.The material in this volume is organized in the following way: the first part (13 lectures) is essentially devoted to growth and structure, the second part to properties and applications, with a closing lecture exploring new exotic diamonds in the distant future. The earlier lectures extensively cover the many processes of plasma chemical vapour deposition, including advanced contributions in theoretical modelling of these processes. Novel deposition mechanisms are considered: low-temperature CVD and laser-activated processes, including the so-called QQC experiments. This first part closes with a discussion of amorphous phases. In the second part, particular emphasis is placed on electronic properties and applications. This includes an extensive discussion of doping and, in addition, the promising perspectives of diamond as an electron emitter. Its newly discovered remarkable electron affinity properties lead to a new dimension in research and development, of great strategical importance for an increasing role of diamond in electronics.
Publisher: IOS Press
ISBN: 1614992207
Category : Science
Languages : en
Pages : 635
Book Description
Diamond is an extreme material among possible atomic aggregations in nature, and as such has many extreme properties. This unique position makes it a fascinating subject both for science and for applications. This has been particularly true in recent years, since the surprising discovery at Union Carbide (1953) of the possibility of chemical vapour deposition of diamond films at low pressures, where diamond is metastable with respect to graphite. This discovery cleared the way to the development of economical deposition techniques that have been obtaining progressively better-quality diamond, both pure and doped, in a controlled way and for a variety of applications. The remarkable properties and applications range from mechanical (the extreme hardness, tensile and compressive strength, wear performance) to thermal (the highest conductivity), optical (wide range of transparency), chemical (inertness to most chemicals), biological (biocompatibility) and electronic (high electronic carrier mobility, large band gap and dielectric breakdown strength, negative electron affinity), with the simultaneous presence of so many extraordinary qualities often resulting in added value for a given application.We are presently at a turning point in the development of diamond physics and applications. While some achievements can be considered well established, on the other hand, new opportunities and challenges are facing the scientific community, particularly with regard to novel exciting deposition processes and techniques or new properties and applications in electronics. This Enrico Fermi Course on "The Physics of Diamond" is particularly focused on the new developments and prospects, which may well constitute a reference point for a new generation of scientists at what may possibly be the beginning of a new age in diamond. The course attracted several of the most distinguished experts in the field as lecturers and an audience of almost as distinguished students and observers from 19 countries. Participation and discussions were lively to the very last day, ranging from traditional diamond physics to new diamond physics, and from well-known applications to the new exciting opportunities.The material in this volume is organized in the following way: the first part (13 lectures) is essentially devoted to growth and structure, the second part to properties and applications, with a closing lecture exploring new exotic diamonds in the distant future. The earlier lectures extensively cover the many processes of plasma chemical vapour deposition, including advanced contributions in theoretical modelling of these processes. Novel deposition mechanisms are considered: low-temperature CVD and laser-activated processes, including the so-called QQC experiments. This first part closes with a discussion of amorphous phases. In the second part, particular emphasis is placed on electronic properties and applications. This includes an extensive discussion of doping and, in addition, the promising perspectives of diamond as an electron emitter. Its newly discovered remarkable electron affinity properties lead to a new dimension in research and development, of great strategical importance for an increasing role of diamond in electronics.
Thin-Film Diamond II
Author: Christopher Nebel
Publisher: Elsevier
ISBN: 0080541046
Category : Science
Languages : en
Pages : 411
Book Description
Part II reviews the state of the art of thin film diamond a very promising new semiconductor that may one day rival silicon as the material of choice for electronics. Diamond has the following important characteristics; it is resistant to radiation damage, chemically inert and biocompatible and it will become "the material" for bio-electronics, in-vivo applications, radiation detectors and high-frequency devices. Thin-Film Diamond II is the first book to summarize state of the art of CVD diamond in depth. It covers the most recent results regarding growth and structural properties, doping and defect characterization, hydrogen in and on diamond as well as surface properties in general, applications of diamond in electrochemistry, as detectors, and in surface acoustic wave devices * Accessible by both experts and non-experts in the field of semi-conductors research and technology, each chapter is written in a tutorial format· * Assisting engineers to manufacture devices with optimized electronic properties· * Truly international, this volume contains chapters written by recognized experts representing academic and industrial institutions from Europe, Japan and the US
Publisher: Elsevier
ISBN: 0080541046
Category : Science
Languages : en
Pages : 411
Book Description
Part II reviews the state of the art of thin film diamond a very promising new semiconductor that may one day rival silicon as the material of choice for electronics. Diamond has the following important characteristics; it is resistant to radiation damage, chemically inert and biocompatible and it will become "the material" for bio-electronics, in-vivo applications, radiation detectors and high-frequency devices. Thin-Film Diamond II is the first book to summarize state of the art of CVD diamond in depth. It covers the most recent results regarding growth and structural properties, doping and defect characterization, hydrogen in and on diamond as well as surface properties in general, applications of diamond in electrochemistry, as detectors, and in surface acoustic wave devices * Accessible by both experts and non-experts in the field of semi-conductors research and technology, each chapter is written in a tutorial format· * Assisting engineers to manufacture devices with optimized electronic properties· * Truly international, this volume contains chapters written by recognized experts representing academic and industrial institutions from Europe, Japan and the US
Properties, Growth and Applications of Diamond
Author: A. J. Neves
Publisher: IET
ISBN: 9780852967850
Category : Science
Languages : en
Pages : 454
Book Description
Recent breakthroughs in the synthesis of diamond have led to increased availability at lower cost. This has spurred R&D into its characterization and application in machine tools, optical coatings, X-ray windows and light-emitting optoelectronic devices. This book draws together expertise from some 60 researchers in Europe and the USA working on bulk and thin film diamond. All fully refereed, the contributions are combined to form a highly structured volume with reviews, evaluations, tables and illustrative material, together with expert guidance to the literature.
Publisher: IET
ISBN: 9780852967850
Category : Science
Languages : en
Pages : 454
Book Description
Recent breakthroughs in the synthesis of diamond have led to increased availability at lower cost. This has spurred R&D into its characterization and application in machine tools, optical coatings, X-ray windows and light-emitting optoelectronic devices. This book draws together expertise from some 60 researchers in Europe and the USA working on bulk and thin film diamond. All fully refereed, the contributions are combined to form a highly structured volume with reviews, evaluations, tables and illustrative material, together with expert guidance to the literature.
Introduction to the Physics of Electron Emission
Author: Kevin L. Jensen
Publisher: John Wiley & Sons
ISBN: 1119051762
Category : Science
Languages : en
Pages : 1305
Book Description
A practical, in-depth description of the physics behind electron emission physics and its usage in science and technology Electron emission is both a fundamental phenomenon and an enabling component that lies at the very heart of modern science and technology. Written by a recognized authority in the field, with expertise in both electron emission physics and electron beam physics, An Introduction to Electron Emission provides an in-depth look at the physics behind thermal, field, photo, and secondary electron emission mechanisms, how that physics affects the beams that result through space charge and emittance growth, and explores the physics behind their utilization in an array of applications. The book addresses mathematical and numerical methods underlying electron emission, describing where the equations originated, how they are related, and how they may be correctly used to model actual sources for devices using electron beams. Writing for the beam physics and solid state communities, the author explores applications of electron emission methodology to solid state, statistical, and quantum mechanical ideas and concepts related to simulations of electron beams to condensed matter, solid state and fabrication communities. Provides an extensive description of the physics behind four electron emission mechanisms—field, photo, and secondary, and how that physics relates to factors such as space charge and emittance that affect electron beams. Introduces readers to mathematical and numerical methods, their origins, and how they may be correctly used to model actual sources for devices using electron beams Demonstrates applications of electron methodology as well as quantum mechanical concepts related to simulations of electron beams to solid state design and manufacture Designed to function as both a graduate-level text and a reference for research professionals Introduction to the Physics of Electron Emission is a valuable learning tool for postgraduates studying quantum mechanics, statistical mechanics, solid state physics, electron transport, and beam physics. It is also an indispensable resource for academic researchers and professionals who use electron sources, model electron emission, develop cathode technologies, or utilize electron beams.
Publisher: John Wiley & Sons
ISBN: 1119051762
Category : Science
Languages : en
Pages : 1305
Book Description
A practical, in-depth description of the physics behind electron emission physics and its usage in science and technology Electron emission is both a fundamental phenomenon and an enabling component that lies at the very heart of modern science and technology. Written by a recognized authority in the field, with expertise in both electron emission physics and electron beam physics, An Introduction to Electron Emission provides an in-depth look at the physics behind thermal, field, photo, and secondary electron emission mechanisms, how that physics affects the beams that result through space charge and emittance growth, and explores the physics behind their utilization in an array of applications. The book addresses mathematical and numerical methods underlying electron emission, describing where the equations originated, how they are related, and how they may be correctly used to model actual sources for devices using electron beams. Writing for the beam physics and solid state communities, the author explores applications of electron emission methodology to solid state, statistical, and quantum mechanical ideas and concepts related to simulations of electron beams to condensed matter, solid state and fabrication communities. Provides an extensive description of the physics behind four electron emission mechanisms—field, photo, and secondary, and how that physics relates to factors such as space charge and emittance that affect electron beams. Introduces readers to mathematical and numerical methods, their origins, and how they may be correctly used to model actual sources for devices using electron beams Demonstrates applications of electron methodology as well as quantum mechanical concepts related to simulations of electron beams to solid state design and manufacture Designed to function as both a graduate-level text and a reference for research professionals Introduction to the Physics of Electron Emission is a valuable learning tool for postgraduates studying quantum mechanics, statistical mechanics, solid state physics, electron transport, and beam physics. It is also an indispensable resource for academic researchers and professionals who use electron sources, model electron emission, develop cathode technologies, or utilize electron beams.
Vacuum Microelectronics
Author: Wei Zhu
Publisher: John Wiley & Sons
ISBN: 0471464090
Category : Technology & Engineering
Languages : en
Pages : 412
Book Description
Expert coverage of vacuum microelectronics-principles, devices, and applications The field of vacuum microelectronics has advanced so swiftly that commercial devices are being fabricated, and applications are being developed in displays, wireless communications, spacecraft, and electronics for use in harsh environments. It is a rapidly evolving, interdisciplinary field encompassing electrical engineering, materials science, vacuum engineering, and applied physics. This book surveys the fundamentals, technology, and device applications of this nascent field. Editor Wei Zhu brings together some of the world's foremost experts to provide comprehensive and in-depth coverage of the entire spectrum of vacuum microelectronics. Topics include: * Field emission theory * Metal and silicon field emitter arrays * Novel cold cathode materials * Field emission flat panel displays * Cold cathode microwave devices Vacuum Microelectronics is intended for practitioners in the display, microwave, telecommunications, and microelectronics industries and in government and university research laboratories, as well as for graduate students majoring in electrical engineering, materials science, and physics. It provides cutting-edge, expert coverage of the subject and serves as both an introductory text and a professional reference.
Publisher: John Wiley & Sons
ISBN: 0471464090
Category : Technology & Engineering
Languages : en
Pages : 412
Book Description
Expert coverage of vacuum microelectronics-principles, devices, and applications The field of vacuum microelectronics has advanced so swiftly that commercial devices are being fabricated, and applications are being developed in displays, wireless communications, spacecraft, and electronics for use in harsh environments. It is a rapidly evolving, interdisciplinary field encompassing electrical engineering, materials science, vacuum engineering, and applied physics. This book surveys the fundamentals, technology, and device applications of this nascent field. Editor Wei Zhu brings together some of the world's foremost experts to provide comprehensive and in-depth coverage of the entire spectrum of vacuum microelectronics. Topics include: * Field emission theory * Metal and silicon field emitter arrays * Novel cold cathode materials * Field emission flat panel displays * Cold cathode microwave devices Vacuum Microelectronics is intended for practitioners in the display, microwave, telecommunications, and microelectronics industries and in government and university research laboratories, as well as for graduate students majoring in electrical engineering, materials science, and physics. It provides cutting-edge, expert coverage of the subject and serves as both an introductory text and a professional reference.
Low-Pressure Synthetic Diamond
Author: Bernhard Dischler
Publisher: Springer Science & Business Media
ISBN: 3642719929
Category : Science
Languages : en
Pages : 383
Book Description
A comprehensive presentation of the complete spectrum of methods for CVD-diamond deposition and an overview of the most important applications.
Publisher: Springer Science & Business Media
ISBN: 3642719929
Category : Science
Languages : en
Pages : 383
Book Description
A comprehensive presentation of the complete spectrum of methods for CVD-diamond deposition and an overview of the most important applications.
Nanodiamond
Author: Oliver A Williams
Publisher: Royal Society of Chemistry
ISBN: 1849737614
Category : Science
Languages : en
Pages : 553
Book Description
The exceptional mechanical, optical, surface and biocompatibility properties of nanodiamond have gained it much interest. Exhibiting the outstanding bulk properties of diamond at the nanoscale in the form of a film or small particle makes it an inexpensive alternative for many applications. Nanodiamond is the first comprehensive book on the subject. The book reviews the state of the art of nanodiamond films and particles covering the fundamentals of growth, purification and spectroscopy and some of its diverse applications such as MEMS, drug delivery and biomarkers and biosensing. Specific chapters include the theory of nanodiamond, diamond nucleation, low temperature growth, diamond nanowires, electrochemistry of nanodiamond, nanodiamond flexible implants, and cell labelling with nanodiamond particles. Edited by a leading expert in nanodiamonds, this is the perfect resource for those new to, and active in, nanodiamond research and those interested in its applications.
Publisher: Royal Society of Chemistry
ISBN: 1849737614
Category : Science
Languages : en
Pages : 553
Book Description
The exceptional mechanical, optical, surface and biocompatibility properties of nanodiamond have gained it much interest. Exhibiting the outstanding bulk properties of diamond at the nanoscale in the form of a film or small particle makes it an inexpensive alternative for many applications. Nanodiamond is the first comprehensive book on the subject. The book reviews the state of the art of nanodiamond films and particles covering the fundamentals of growth, purification and spectroscopy and some of its diverse applications such as MEMS, drug delivery and biomarkers and biosensing. Specific chapters include the theory of nanodiamond, diamond nucleation, low temperature growth, diamond nanowires, electrochemistry of nanodiamond, nanodiamond flexible implants, and cell labelling with nanodiamond particles. Edited by a leading expert in nanodiamonds, this is the perfect resource for those new to, and active in, nanodiamond research and those interested in its applications.
CVD Diamond for Electronic Devices and Sensors
Author: Ricardo S. Sussmann
Publisher: John Wiley & Sons
ISBN: 9780470740361
Category : Technology & Engineering
Languages : en
Pages : 596
Book Description
Synthetic diamond is diamond produced by using chemical or physical processes. Like naturally occurring diamond it is composed of a three-dimensional carbon crystal. Due to its extreme physical properties, synthetic diamond is used in many industrial applications, such as drill bits and scratch-proof coatings, and has the potential to be used in many new application areas A brand new title from the respected Wiley Materials for Electronic and Optoelectronic Applications series, this title is the most up-to-date resource for diamond specialists. Beginning with an introduction to the properties of diamond, defects, impurities and the growth of CVD diamond with its imminent commercial impact, the remainder of the book comprises six sections: introduction, radiation sensors, active electronic devices, biosensors, MEMs and electrochemistry. Subsequent chapters cover the diverse areas in which diamond applications are having an impact including electronics, sensors and actuators and medicine.
Publisher: John Wiley & Sons
ISBN: 9780470740361
Category : Technology & Engineering
Languages : en
Pages : 596
Book Description
Synthetic diamond is diamond produced by using chemical or physical processes. Like naturally occurring diamond it is composed of a three-dimensional carbon crystal. Due to its extreme physical properties, synthetic diamond is used in many industrial applications, such as drill bits and scratch-proof coatings, and has the potential to be used in many new application areas A brand new title from the respected Wiley Materials for Electronic and Optoelectronic Applications series, this title is the most up-to-date resource for diamond specialists. Beginning with an introduction to the properties of diamond, defects, impurities and the growth of CVD diamond with its imminent commercial impact, the remainder of the book comprises six sections: introduction, radiation sensors, active electronic devices, biosensors, MEMs and electrochemistry. Subsequent chapters cover the diverse areas in which diamond applications are having an impact including electronics, sensors and actuators and medicine.
Physics and Applications of CVD Diamond
Author: Satoshi Koizumi
Publisher: John Wiley & Sons
ISBN: 3527623183
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs. Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is essential reading for everyone working in environments that involve conventional electronics, biotechnology, quantum computing, quantum cryptography, superconductivity and light emission from highly excited excitonic systems.
Publisher: John Wiley & Sons
ISBN: 3527623183
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs. Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is essential reading for everyone working in environments that involve conventional electronics, biotechnology, quantum computing, quantum cryptography, superconductivity and light emission from highly excited excitonic systems.