Author: Jin Au Kong
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 728
Book Description
This is a first year graduate text on electromagnetic field theory emphasizing mathematical approaches, problem solving and physical interpretation. Examples deal with guidance, propagation, radiation and scattering of electromagnetic waves, metallic and dielectric wave guides, resonators, antennas and radiating structures, Cerenkov radiation, moving media, plasmas, crystals, integrated optics, lasers and fibers, remote sensing, geophysical probing, dipole antennas and stratified media.
Electromagnetic Wave Theory
Author: Jin Au Kong
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 728
Book Description
This is a first year graduate text on electromagnetic field theory emphasizing mathematical approaches, problem solving and physical interpretation. Examples deal with guidance, propagation, radiation and scattering of electromagnetic waves, metallic and dielectric wave guides, resonators, antennas and radiating structures, Cerenkov radiation, moving media, plasmas, crystals, integrated optics, lasers and fibers, remote sensing, geophysical probing, dipole antennas and stratified media.
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 728
Book Description
This is a first year graduate text on electromagnetic field theory emphasizing mathematical approaches, problem solving and physical interpretation. Examples deal with guidance, propagation, radiation and scattering of electromagnetic waves, metallic and dielectric wave guides, resonators, antennas and radiating structures, Cerenkov radiation, moving media, plasmas, crystals, integrated optics, lasers and fibers, remote sensing, geophysical probing, dipole antennas and stratified media.
Electromagnetic Wave Theory for Boundary-Value Problems
Author: Hyo J. Eom
Publisher: Springer Science & Business Media
ISBN: 3662069431
Category : Science
Languages : en
Pages : 321
Book Description
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
Publisher: Springer Science & Business Media
ISBN: 3662069431
Category : Science
Languages : en
Pages : 321
Book Description
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
Theory of Electromagnetic Wave Propagation
Author: Charles Herach Papas
Publisher: Courier Corporation
ISBN: 048614514X
Category : Science
Languages : en
Pages : 274
Book Description
Clear, coherent work for graduate-level study discusses the Maxwell field equations, radiation from wire antennas, wave aspects of radio-astronomical antenna theory, the Doppler effect, and more.
Publisher: Courier Corporation
ISBN: 048614514X
Category : Science
Languages : en
Pages : 274
Book Description
Clear, coherent work for graduate-level study discusses the Maxwell field equations, radiation from wire antennas, wave aspects of radio-astronomical antenna theory, the Doppler effect, and more.
Electromagnetic Wave Propagation, Radiation, and Scattering
Author: Akira Ishimaru
Publisher: John Wiley & Sons
ISBN: 1119079535
Category : Science
Languages : en
Pages : 1045
Book Description
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Publisher: John Wiley & Sons
ISBN: 1119079535
Category : Science
Languages : en
Pages : 1045
Book Description
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Electromagnetic Wave Theory
Author: J. C. Brown
Publisher: Elsevier
ISBN: 1483185915
Category : Science
Languages : en
Pages : 558
Book Description
International Series of Monographs in Electromagnetic Waves, Volume 11: Electromagnetic Wave Theory, Part 1 covers the proceedings of an International Scientific Radio Union (U.R.S.I.) Symposium on Electromagnetic Wave Theory. The book contains 61 chapters that are organized into three sections. The first section presents papers about wave propagation, which includes lateral waves; terrestrial waveguides; and plane waves in dissipative media. Next, the title reviews studies about wave guides, including basic properties of periodic waveguides; theoretical investigation of non-uniform waveguides; and waves in a coaxial line partially filled with plasma. The last section covers topics about surface waves, such as a dielectric prism in the corner of overmoded waveguide; lasers and optical communication systems; and microwave and laser resonators. The text will be of great use to researchers and practitioners of disciplines that study or utilize electromagnetic wave technologies, such as electrotechnics and electrical engineering.
Publisher: Elsevier
ISBN: 1483185915
Category : Science
Languages : en
Pages : 558
Book Description
International Series of Monographs in Electromagnetic Waves, Volume 11: Electromagnetic Wave Theory, Part 1 covers the proceedings of an International Scientific Radio Union (U.R.S.I.) Symposium on Electromagnetic Wave Theory. The book contains 61 chapters that are organized into three sections. The first section presents papers about wave propagation, which includes lateral waves; terrestrial waveguides; and plane waves in dissipative media. Next, the title reviews studies about wave guides, including basic properties of periodic waveguides; theoretical investigation of non-uniform waveguides; and waves in a coaxial line partially filled with plasma. The last section covers topics about surface waves, such as a dielectric prism in the corner of overmoded waveguide; lasers and optical communication systems; and microwave and laser resonators. The text will be of great use to researchers and practitioners of disciplines that study or utilize electromagnetic wave technologies, such as electrotechnics and electrical engineering.
Tour of the Electromagnetic Spectrum
Author: Ginger Butcher
Publisher: Government Printing Office
ISBN: 9780996778022
Category : Artificial satellites
Languages : en
Pages : 40
Book Description
Publisher: Government Printing Office
ISBN: 9780996778022
Category : Artificial satellites
Languages : en
Pages : 40
Book Description
Lateral Electromagnetic Waves
Author: Ronold W.P. King
Publisher: Springer Science & Business Media
ISBN: 1461391741
Category : Technology & Engineering
Languages : en
Pages : 771
Book Description
The propagation of waves along and across the boundary between two media with different characteristic velocities is much more complicated when the source is on or near the boundary than when it is far away and the incident waves are plane. Examples of waves generated by localized sources near a boundary are the electromagnetic waves from the currents in a dipole on the surface of the earth and the seismic waves from a slip event in a fault in the earth's crust like the San Andreas fault in California. Both involve a type of surface wave that is called a lateral wave in electro magnetics and a head wave in seismology. Since the two are analogous and the latter is more easily visualized, it is conveniently used here to introduce and describe this important type of surface wave using the data of Y. Ben Zion and P. Malin ("San Andreas Fault Zone Head Waves Near Parkfield, CA," Science 251, 1592-1594, 29 March 1991).
Publisher: Springer Science & Business Media
ISBN: 1461391741
Category : Technology & Engineering
Languages : en
Pages : 771
Book Description
The propagation of waves along and across the boundary between two media with different characteristic velocities is much more complicated when the source is on or near the boundary than when it is far away and the incident waves are plane. Examples of waves generated by localized sources near a boundary are the electromagnetic waves from the currents in a dipole on the surface of the earth and the seismic waves from a slip event in a fault in the earth's crust like the San Andreas fault in California. Both involve a type of surface wave that is called a lateral wave in electro magnetics and a head wave in seismology. Since the two are analogous and the latter is more easily visualized, it is conveniently used here to introduce and describe this important type of surface wave using the data of Y. Ben Zion and P. Malin ("San Andreas Fault Zone Head Waves Near Parkfield, CA," Science 251, 1592-1594, 29 March 1991).
Fundamentals of Optical Waveguides
Author: Katsunari Okamoto
Publisher: Elsevier
ISBN: 0080455069
Category : Technology & Engineering
Languages : en
Pages : 578
Book Description
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)
Publisher: Elsevier
ISBN: 0080455069
Category : Technology & Engineering
Languages : en
Pages : 578
Book Description
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)
Theory of Electromagnetic Waves
Author: Jin Au Kong
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 364
Book Description
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 364
Book Description
Electromagnetic Modeling and Simulation
Author: Levent Sevgi
Publisher: John Wiley & Sons
ISBN: 111887711X
Category : Science
Languages : en
Pages : 665
Book Description
This unique book presents simple, easy-to-use, but effective short codes as well as virtual tools that can be used by electrical, electronic, communication, and computer engineers in a broad range of electrical engineering problems Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In this book, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. Unique in coverage and tutorial approach, Electromagnetic Modeling and Simulation covers fundamental analytical and numerical models that are widely used in teaching, research, and engineering designs—including mode and ray summation approaches with the canonical 2D nonpenetrable parallel plate waveguide as well as FDTD, MoM, and SSPE scripts. The book also establishes an intelligent balance among the essentials of EM MODSIM: The Problem (the physics), The Theory and Models (mathematical background and analytical solutions), and The Simulations (code developing plus validation, verification, and calibration). Classroom tested in graduate-level and short courses, Electromagnetic Modeling and Simulation: Clarifies concepts through numerous worked problems and quizzes provided throughout the book Features valuable MATLAB-based, user-friendly, effective engineering and research virtual design tools Includes sample scenarios and video clips recorded during characteristic simulations that visually impact learning—available on wiley.com Provides readers with their first steps in EM MODSIM as well as tools for medium and high-level code developers and users Electromagnetic Modeling and Simulation thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling, making it an ideal resource for electrical engineers and researchers.
Publisher: John Wiley & Sons
ISBN: 111887711X
Category : Science
Languages : en
Pages : 665
Book Description
This unique book presents simple, easy-to-use, but effective short codes as well as virtual tools that can be used by electrical, electronic, communication, and computer engineers in a broad range of electrical engineering problems Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In this book, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. Unique in coverage and tutorial approach, Electromagnetic Modeling and Simulation covers fundamental analytical and numerical models that are widely used in teaching, research, and engineering designs—including mode and ray summation approaches with the canonical 2D nonpenetrable parallel plate waveguide as well as FDTD, MoM, and SSPE scripts. The book also establishes an intelligent balance among the essentials of EM MODSIM: The Problem (the physics), The Theory and Models (mathematical background and analytical solutions), and The Simulations (code developing plus validation, verification, and calibration). Classroom tested in graduate-level and short courses, Electromagnetic Modeling and Simulation: Clarifies concepts through numerous worked problems and quizzes provided throughout the book Features valuable MATLAB-based, user-friendly, effective engineering and research virtual design tools Includes sample scenarios and video clips recorded during characteristic simulations that visually impact learning—available on wiley.com Provides readers with their first steps in EM MODSIM as well as tools for medium and high-level code developers and users Electromagnetic Modeling and Simulation thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling, making it an ideal resource for electrical engineers and researchers.