Electromagnetic Fluctuations at the Nanoscale PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electromagnetic Fluctuations at the Nanoscale PDF full book. Access full book title Electromagnetic Fluctuations at the Nanoscale by Aleksandr I. Volokitin. Download full books in PDF and EPUB format.

Electromagnetic Fluctuations at the Nanoscale

Electromagnetic Fluctuations at the Nanoscale PDF Author: Aleksandr I. Volokitin
Publisher: Springer
ISBN: 3662534746
Category : Technology & Engineering
Languages : en
Pages : 421

Book Description
This book provides a general formalism for the calculation of the spectral correlation function for the fluctuating electromagnetic field. The procedure is applied to the radiative heat transfer and the van der Waals friction using both the semi-classical theory of the fluctuating electromagnetic field and quantum field theory. Applications of the radiative heat transfer and non-contact friction to scanning probe spectroscopy are presented. The theory gives a tentative explanation for the experimental non-contact friction data. The book explains that radiative heat transfer and the van der Waals friction are largely enhanced at short separations between the bodies due to the evanescent electromagnetic waves. Particular strong enhancement occurs if the surfaces of the bodies can support localized surface modes like surface plasmons, surface polaritons or adsorbate vibrational modes. An electromagnetic field outside a moving body can also be created by static charges which are always present on the surface of the body due to inhomogeneities, or due to a bias voltage. This electromagnetic field produces electrostatic friction which can be significantly enhanced if on the surface of the body there is a 2D electron or hole system or an incommensurate adsorbed layer of ions exhibiting acoustic vibrations.

Electromagnetic Fluctuations at the Nanoscale

Electromagnetic Fluctuations at the Nanoscale PDF Author: Aleksandr I. Volokitin
Publisher: Springer
ISBN: 3662534746
Category : Technology & Engineering
Languages : en
Pages : 421

Book Description
This book provides a general formalism for the calculation of the spectral correlation function for the fluctuating electromagnetic field. The procedure is applied to the radiative heat transfer and the van der Waals friction using both the semi-classical theory of the fluctuating electromagnetic field and quantum field theory. Applications of the radiative heat transfer and non-contact friction to scanning probe spectroscopy are presented. The theory gives a tentative explanation for the experimental non-contact friction data. The book explains that radiative heat transfer and the van der Waals friction are largely enhanced at short separations between the bodies due to the evanescent electromagnetic waves. Particular strong enhancement occurs if the surfaces of the bodies can support localized surface modes like surface plasmons, surface polaritons or adsorbate vibrational modes. An electromagnetic field outside a moving body can also be created by static charges which are always present on the surface of the body due to inhomogeneities, or due to a bias voltage. This electromagnetic field produces electrostatic friction which can be significantly enhanced if on the surface of the body there is a 2D electron or hole system or an incommensurate adsorbed layer of ions exhibiting acoustic vibrations.

Nanoscale Magnetic Materials and Applications

Nanoscale Magnetic Materials and Applications PDF Author: J. Ping Liu
Publisher: Springer Science & Business Media
ISBN: 0387856005
Category : Science
Languages : en
Pages : 731

Book Description
Nanoscale Magnetic Materials and Applications covers exciting new developments in the field of advanced magnetic materials. Readers will find valuable reviews of the current experimental and theoretical work on novel magnetic structures, nanocomposite magnets, spintronic materials, domain structure and domain-wall motion, in addition to nanoparticles and patterned magnetic recording media. Cutting-edge applications in the field are described by leading experts from academic and industrial communities. These include new devices based on domain wall motion, magnetic sensors derived from both giant and tunneling magnetoresistance, thin film devices in micro-electromechanical systems, and nanoparticle applications in biomedicine. In addition to providing an introduction to the advances in magnetic materials and applications at the nanoscale, this volume also presents emerging materials and phenomena, such as magnetocaloric and ferromagnetic shape memory materials, which motivate future development in this exciting field. Nanoscale Magnetic Materials and Applications also features a foreword written by Peter Grünberg, recipient of the 2007 Nobel Prize in Physics.

Magnetophotonics

Magnetophotonics PDF Author: Mitsuteru Inoue
Publisher: Springer Science & Business Media
ISBN: 3642355099
Category : Technology & Engineering
Languages : en
Pages : 238

Book Description
This book merges theoretical and experimental works initiated in 1997 from consideration of periodical artificial dielectric structures comprising magneto-optical materials. Modern advances in magnetophotonics are discussed giving theoretical analyses and demonstrations of the consequences of light interaction with non-reciprocal media of various designs. This first collection of foundational works is devoted to light-to-artificial magnetic matter phenomena and related applications. The subject covers the physical background and the continuing research in the field of magnetophotonics.

Modeling and Computations in Electromagnetics

Modeling and Computations in Electromagnetics PDF Author: Habib Ammari
Publisher: Springer Science & Business Media
ISBN: 3540737782
Category : Technology & Engineering
Languages : en
Pages : 239

Book Description
This is nothing less than an essential text in what is a new and growing discipline. Electromagnetic modeling and computations is expanding as a result of the steadily increasing demand for designing electrical devices, modeling electromagnetic materials, and simulating electromagnetic fields in nanoscale structures. The aim of this volume is to bring together prominent worldwide experts to review state-of-the-art developments and future trends of modeling and computations in electromagnetics.

Mapping Nanotechnology Innovations and Knowledge

Mapping Nanotechnology Innovations and Knowledge PDF Author: Hsinchun Chen
Publisher: Springer Science & Business Media
ISBN: 0387716203
Category : Technology & Engineering
Languages : en
Pages : 344

Book Description
This book defines the application of Information Technology’s systematic and automated knowledge mapping methodology to collect, analyze and report nanotechnology research on a global basis. The result of these analyses is be a systematic presentation of the state of the art of nanotechnology, which will include basic analysis, content analysis, and citation network analysis of comprehensive nanotechnology findings across technology domains, inventors, institutions, and countries.

BioMEMS and Biomedical Nanotechnology

BioMEMS and Biomedical Nanotechnology PDF Author: Mihrimah Ozkan
Publisher: Springer Science & Business Media
ISBN: 0387258434
Category : Technology & Engineering
Languages : en
Pages : 554

Book Description
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices with applications to Genomics and Proteomics. Topics include gene expression profiling utilizing microarray technology; imaging and sensing for gene detection and use in DNA analysis; and coverage of advanced microfluidic devices and the Humane Genome Project.

Effects of Electric Fields on Structure and Reactivity

Effects of Electric Fields on Structure and Reactivity PDF Author: Sason Shaik
Publisher: Royal Society of Chemistry
ISBN: 1839163046
Category : Science
Languages : en
Pages : 447

Book Description
Electric-field-mediated chemistry is an emerging topic that is rapidly growing and fanning out in many directions. It involves theoretical and experimental aspects, as well as intense interplay between them, including breakthrough achievements such as the proof-of-principle that a Diels–Alder reaction, which involves two simultaneous C–C bond making events, can be catalysed or inhibited simply by changing the direction of an oriented external-electric field (OEEF). This productive interplay between the theoretical and experimental branches of chemistry is continuing, and gradually defining a new sub-field wherein various sources of electric fields, whether external or built-in and designed, or even surface induced fields (plasmons), are brought to bear on chemical reactions, molecular structures, and nano-systems, leading to control of reactivity, selectivity, chirality, molecular orientations, changes in structure, and in dynamics. Written by leaders in the field, Effects of Electric Fields on Structure and Reactivity is the first book on this exciting topic. Starting with an overview of the theory behind – and demonstrations of the effect of – electric fields on structure and reactivity, this accessible reference work aims to encourage those new to the field to consider harnessing these effects in their own work. Covering applications and recent theoretical developments, it is a useful resource for theoretical chemists and experimentalists alike.

Nano-Optics

Nano-Optics PDF Author: Sabu Thomas
Publisher: Elsevier
ISBN: 0128183934
Category : Technology & Engineering
Languages : en
Pages : 378

Book Description
Nano-Optics: Fundamentals, Experimental Methods, and Applications offers insights into the fundamentals and industrial applications of nanoscale light-emitting materials and their composites. This book serves as a reference, offering an overview of existing research, with a particular focus on industrial applications. Nano-optics is the branch of nanoscience and nanotechnology that deals with interaction of light with nanoscale objects. This book explores the materials, structure, manufacturing techniques, and industrial applications of nano-optics. The applications discussed include healthcare, communication, astronomy, and satellites. - Explains the major manufacturing techniques for light-emitting nanoscale materials - Discusses how nanoscale optical materials are being used in a range of industrial applications - Assesses the challenges of using nano-optics in a mass-production context

Electric Field

Electric Field PDF Author: Mohsen Sheikholeslami Kandelousi
Publisher: BoD – Books on Demand
ISBN: 1789231868
Category : Technology & Engineering
Languages : en
Pages : 324

Book Description
In the present book, various applications of electric field are introduced in health and biology like treating cancer and cell sorting and in engineering and technological applications like enhancing the heat transfer, colloidal hydrodynamics and stability, and lithography. Electric field is defined as a force field arising from the electric charges. Depending on the nature of the material (the ability to polarize) and the inherent or attained surface charges, the response of the electric field varies.

High Magnetic Field Science and Its Application in the United States

High Magnetic Field Science and Its Application in the United States PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309286344
Category : Science
Languages : en
Pages : 233

Book Description
The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.