Author: Yuriy M. Penkin
Publisher: Springer
ISBN: 3319978195
Category : Technology & Engineering
Languages : en
Pages : 207
Book Description
This book discusses the problem of electromagnetic wave excitation in spatial regions with spherical boundaries and the accurate mathematical modeling based on numerical and analytical methods to significantly reduce the time required for developing new antenna devices. It particularly focuses on elements and systems on mobile objects of complex shape that are made of new technological materials. The experimental development of such devices and systems is an extremely time-consuming, lengthy, and expensive process. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna design. The authors assume that readers understand the basics of vector and tensor analysis, as well as the general theory of electrodynamics. The original results presented can be directly used in the development of spherical antennas and antenna systems for the mobile objects. The book addresses problems concerning the construction of Green’s functions for Hertz potentials in electrodynamic volumes with spherical boundaries, and solves these clearly and concisely. It also uses specific examples to analyze areas where the results could potentially be applied. The book covers the following topics: · excitation of electromagnetic fields in coordinate electrodynamic volumes; · Green’s functions for spherical resonators; · Green’s functions for infinite space outside of spherical scatterers; · electromagnetic fields of dipole radiators on spherical scatterers; · electromagnetic fields of thin radial impedance vibrators on perfectly conducting spheres; · electrodynamic characteristics of narrow slots in spherical surfaces; · multi-element and combined vibrator-slot radiators on spherical surfaces.
Electromagnetic Fields Excited in Volumes with Spherical Boundaries
Author: Yuriy M. Penkin
Publisher: Springer
ISBN: 3319978195
Category : Technology & Engineering
Languages : en
Pages : 207
Book Description
This book discusses the problem of electromagnetic wave excitation in spatial regions with spherical boundaries and the accurate mathematical modeling based on numerical and analytical methods to significantly reduce the time required for developing new antenna devices. It particularly focuses on elements and systems on mobile objects of complex shape that are made of new technological materials. The experimental development of such devices and systems is an extremely time-consuming, lengthy, and expensive process. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna design. The authors assume that readers understand the basics of vector and tensor analysis, as well as the general theory of electrodynamics. The original results presented can be directly used in the development of spherical antennas and antenna systems for the mobile objects. The book addresses problems concerning the construction of Green’s functions for Hertz potentials in electrodynamic volumes with spherical boundaries, and solves these clearly and concisely. It also uses specific examples to analyze areas where the results could potentially be applied. The book covers the following topics: · excitation of electromagnetic fields in coordinate electrodynamic volumes; · Green’s functions for spherical resonators; · Green’s functions for infinite space outside of spherical scatterers; · electromagnetic fields of dipole radiators on spherical scatterers; · electromagnetic fields of thin radial impedance vibrators on perfectly conducting spheres; · electrodynamic characteristics of narrow slots in spherical surfaces; · multi-element and combined vibrator-slot radiators on spherical surfaces.
Publisher: Springer
ISBN: 3319978195
Category : Technology & Engineering
Languages : en
Pages : 207
Book Description
This book discusses the problem of electromagnetic wave excitation in spatial regions with spherical boundaries and the accurate mathematical modeling based on numerical and analytical methods to significantly reduce the time required for developing new antenna devices. It particularly focuses on elements and systems on mobile objects of complex shape that are made of new technological materials. The experimental development of such devices and systems is an extremely time-consuming, lengthy, and expensive process. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna design. The authors assume that readers understand the basics of vector and tensor analysis, as well as the general theory of electrodynamics. The original results presented can be directly used in the development of spherical antennas and antenna systems for the mobile objects. The book addresses problems concerning the construction of Green’s functions for Hertz potentials in electrodynamic volumes with spherical boundaries, and solves these clearly and concisely. It also uses specific examples to analyze areas where the results could potentially be applied. The book covers the following topics: · excitation of electromagnetic fields in coordinate electrodynamic volumes; · Green’s functions for spherical resonators; · Green’s functions for infinite space outside of spherical scatterers; · electromagnetic fields of dipole radiators on spherical scatterers; · electromagnetic fields of thin radial impedance vibrators on perfectly conducting spheres; · electrodynamic characteristics of narrow slots in spherical surfaces; · multi-element and combined vibrator-slot radiators on spherical surfaces.
Electromagnetic Fields Excited in Volumes with Spherical Boundaries
Author: Yuriy M. Penkin
Publisher:
ISBN: 9783319978208
Category : SCIENCE
Languages : en
Pages :
Book Description
This book discusses the problem of electromagnetic wave excitation in spatial regions with spherical boundaries and the accurate mathematical modeling based on numerical and analytical methods to significantly reduce the time required for developing new antenna devices. It particularly focuses on elements and systems on mobile objects of complex shape that are made of new technological materials. The experimental development of such devices and systems is an extremely time-consuming, lengthy, and expensive process. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna design. The authors assume that readers understand the basics of vector and tensor analysis, as well as the general theory of electrodynamics. The original results presented can be directly used in the development of spherical antennas and antenna systems for the mobile objects. The book addresses problems concerning the construction of Green’s functions for Hertz potentials in electrodynamic volumes with spherical boundaries, and solves these clearly and concisely. It also uses specific examples to analyze areas where the results could potentially be applied. The book covers the following topics: · excitation of electromagnetic fields in coordinate electrodynamic volumes; · Green’s functions for spherical resonators; · Green’s functions for infinite space outside of spherical scatterers; · electromagnetic fields of dipole radiators on spherical scatterers; · electromagnetic fields of thin radial impedance vibrators on perfectly conducting spheres; · electrodynamic characteristics of narrow slots in spherical surfaces; · multi-element and combined vibrator-slot radiators on spherical surfaces.
Publisher:
ISBN: 9783319978208
Category : SCIENCE
Languages : en
Pages :
Book Description
This book discusses the problem of electromagnetic wave excitation in spatial regions with spherical boundaries and the accurate mathematical modeling based on numerical and analytical methods to significantly reduce the time required for developing new antenna devices. It particularly focuses on elements and systems on mobile objects of complex shape that are made of new technological materials. The experimental development of such devices and systems is an extremely time-consuming, lengthy, and expensive process. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna design. The authors assume that readers understand the basics of vector and tensor analysis, as well as the general theory of electrodynamics. The original results presented can be directly used in the development of spherical antennas and antenna systems for the mobile objects. The book addresses problems concerning the construction of Green’s functions for Hertz potentials in electrodynamic volumes with spherical boundaries, and solves these clearly and concisely. It also uses specific examples to analyze areas where the results could potentially be applied. The book covers the following topics: · excitation of electromagnetic fields in coordinate electrodynamic volumes; · Green’s functions for spherical resonators; · Green’s functions for infinite space outside of spherical scatterers; · electromagnetic fields of dipole radiators on spherical scatterers; · electromagnetic fields of thin radial impedance vibrators on perfectly conducting spheres; · electrodynamic characteristics of narrow slots in spherical surfaces; · multi-element and combined vibrator-slot radiators on spherical surfaces.
Combined Vibrator-Slot Structures: Theory and Applications
Author: Mikhail V. Nesterenko
Publisher: Springer Nature
ISBN: 3030601773
Category : Science
Languages : en
Pages : 337
Book Description
The book presents solutions to a complex of internal and external problems of electromagnetics associated with the development of theory, construction of mathematical models and the development of rigorous methods for calculating the electrodynamic characteristics of combined vibrator-slot structures. The solutions of problems for determining the characteristics of impedance vibrator and slot radiators with arbitrary geometric and electrophysical parameters presented in the monograph were obtained within the framework of the unified methodological approach to construct asymptotic solutions of integral equations on currents and their systems. This approach made it possible to study a number of new combined vibrator-slot structures. The research results reveal the possibilities of using such structures as basic elements in the creation of modern antenna-waveguide devices operating in the ranges from meter to millimeter wavelengths, with new technical characteristics and functional purpose. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna-feeder design. The book covers the following topics: • excitation of electromagnetic waves in volumes with coordinate boundaries;• general issues of the theory of thin impedance vibrators and narrow slots in a spatial-frequency representation;• solution of current equations for isolated vibrator and slot scatterers;• combined radiating vibrator-slot structures in rectangular waveguide;• T-junctions of rectangular waveguides with vibrator-slot structures in coupling areas;• waveguide radiation of the combined vibrator-slot structures;• combined vibrator-slot structures located on a perfectly conducting sphere;• combined vibrator-slot Radiators in antenna arrays;• ultrawideband vibrator-slot structures;
Publisher: Springer Nature
ISBN: 3030601773
Category : Science
Languages : en
Pages : 337
Book Description
The book presents solutions to a complex of internal and external problems of electromagnetics associated with the development of theory, construction of mathematical models and the development of rigorous methods for calculating the electrodynamic characteristics of combined vibrator-slot structures. The solutions of problems for determining the characteristics of impedance vibrator and slot radiators with arbitrary geometric and electrophysical parameters presented in the monograph were obtained within the framework of the unified methodological approach to construct asymptotic solutions of integral equations on currents and their systems. This approach made it possible to study a number of new combined vibrator-slot structures. The research results reveal the possibilities of using such structures as basic elements in the creation of modern antenna-waveguide devices operating in the ranges from meter to millimeter wavelengths, with new technical characteristics and functional purpose. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna-feeder design. The book covers the following topics: • excitation of electromagnetic waves in volumes with coordinate boundaries;• general issues of the theory of thin impedance vibrators and narrow slots in a spatial-frequency representation;• solution of current equations for isolated vibrator and slot scatterers;• combined radiating vibrator-slot structures in rectangular waveguide;• T-junctions of rectangular waveguides with vibrator-slot structures in coupling areas;• waveguide radiation of the combined vibrator-slot structures;• combined vibrator-slot structures located on a perfectly conducting sphere;• combined vibrator-slot Radiators in antenna arrays;• ultrawideband vibrator-slot structures;
Advance Elements of Laser Circuits and Systems
Author: Ofer Aluf
Publisher: Springer Nature
ISBN: 3030641031
Category : Technology & Engineering
Languages : en
Pages : 1235
Book Description
This book on Advance Elements of Laser circuits and systems Nonlinearity applications in engineering addresses two separate engineering and scientific areas, and presents advanced analysis methods for Laser circuits and systems that cover a broad range of engineering and scientific applications. The book analyzed Laser circuits and systems as linear and nonlinear dynamical systems and there limit cycles, bifurcation, and limit cycle stability by using nonlinear dynamic theory. Further, it discussed a broad range of bifurcations related to Laser systems and circuits, starting from laser system differential equations and their bifurcations, delay differential equations (DDEs) are a function of time delays, delay dependent parameters, followed by phase plane analysis, limit cycles and their bifurcations, chaos, iterated maps, period doubling. It combines graphical information with analytical analysis to effectively study the local stability of Laser systems models involving delay dependent parameters. Specifically, the stability of a given steady state is determined by the graphs of some functions of which can be expressed explicitly. The Laser circuits and systems are Laser diode circuits, MRI system Laser diode circuitry, Electron-photon exchanges into VCSEL, Ti: Sapphire laser systems, Ion channel and long-wavelength lasers, Solid state lasers, Solid state laser controlled by semiconductor devices, microchip solid-state laser, Q-switched diode-pumped solid-state laser, Nd:YAG, Mid-Infrared and Q-switched microchip lasers, Gas laser systems, copper vapor laser (CVL) circuitry, Dual-wavelength laser systems, Dual-wavelength operation of a Ti:sapphire laser, Diode-pumped Q-switched Nd:YVO4 yellow laser, Asymmetric dual quantum well lasers, Tm3+-doped silica fibre lasers, Terahertz dual-wavelength quantum cascade laser. The Book address also the additional areas, Laser X guiding system, Plasma diagnostics, Laser Beam shaping, Jitter and crosstalk, Plasma mirror systems, and High power Laser/Target diagnostic system optical elements. The book is unique in its emphasis on practical and innovative engineering and scientific applications. All conceptual Laser circuits are innovative and can be broadly implemented in many engineering applications. The dynamics of Laser circuits and systems provides several ways to use them in a variety of applications covering wide areas. This book is aimed at electrical and electronics engineers, students and researchers in physics as well. It is also aimed for research institutes in lasers and plasma physics and gives good comprehensive in laser and plasma systems. In each chapter, the concept is developed from basic assumptions up to the final engineering and scientific outcomes. The scientific background is explained at basic and advance levels and closely integrated with mathematical theory. Many examples are presented in this book and it is also ideal for intermediate level courses at graduate level studies. It is also ideal for engineer who has not had formal instruction in nonlinear dynamics, but who now desires to fill the gap between innovative Laser circuits/systems and advance mathematical analysis methods
Publisher: Springer Nature
ISBN: 3030641031
Category : Technology & Engineering
Languages : en
Pages : 1235
Book Description
This book on Advance Elements of Laser circuits and systems Nonlinearity applications in engineering addresses two separate engineering and scientific areas, and presents advanced analysis methods for Laser circuits and systems that cover a broad range of engineering and scientific applications. The book analyzed Laser circuits and systems as linear and nonlinear dynamical systems and there limit cycles, bifurcation, and limit cycle stability by using nonlinear dynamic theory. Further, it discussed a broad range of bifurcations related to Laser systems and circuits, starting from laser system differential equations and their bifurcations, delay differential equations (DDEs) are a function of time delays, delay dependent parameters, followed by phase plane analysis, limit cycles and their bifurcations, chaos, iterated maps, period doubling. It combines graphical information with analytical analysis to effectively study the local stability of Laser systems models involving delay dependent parameters. Specifically, the stability of a given steady state is determined by the graphs of some functions of which can be expressed explicitly. The Laser circuits and systems are Laser diode circuits, MRI system Laser diode circuitry, Electron-photon exchanges into VCSEL, Ti: Sapphire laser systems, Ion channel and long-wavelength lasers, Solid state lasers, Solid state laser controlled by semiconductor devices, microchip solid-state laser, Q-switched diode-pumped solid-state laser, Nd:YAG, Mid-Infrared and Q-switched microchip lasers, Gas laser systems, copper vapor laser (CVL) circuitry, Dual-wavelength laser systems, Dual-wavelength operation of a Ti:sapphire laser, Diode-pumped Q-switched Nd:YVO4 yellow laser, Asymmetric dual quantum well lasers, Tm3+-doped silica fibre lasers, Terahertz dual-wavelength quantum cascade laser. The Book address also the additional areas, Laser X guiding system, Plasma diagnostics, Laser Beam shaping, Jitter and crosstalk, Plasma mirror systems, and High power Laser/Target diagnostic system optical elements. The book is unique in its emphasis on practical and innovative engineering and scientific applications. All conceptual Laser circuits are innovative and can be broadly implemented in many engineering applications. The dynamics of Laser circuits and systems provides several ways to use them in a variety of applications covering wide areas. This book is aimed at electrical and electronics engineers, students and researchers in physics as well. It is also aimed for research institutes in lasers and plasma physics and gives good comprehensive in laser and plasma systems. In each chapter, the concept is developed from basic assumptions up to the final engineering and scientific outcomes. The scientific background is explained at basic and advance levels and closely integrated with mathematical theory. Many examples are presented in this book and it is also ideal for intermediate level courses at graduate level studies. It is also ideal for engineer who has not had formal instruction in nonlinear dynamics, but who now desires to fill the gap between innovative Laser circuits/systems and advance mathematical analysis methods
Scientific and Technical Aerospace Reports
Soviet Physics
Ultracold Gases and Quantum Information
Author: Christian Miniatura
Publisher: Lecture Notes of the Les Houch
ISBN: 0199603650
Category : Science
Languages : en
Pages : 663
Book Description
Since 1951, the prestigious Les Houches summer school has given rigorous graduate programmes in France. In July 2009, the first Les Houches school outside Europe took place in Singapore. This volume gathers the lectures conducted at the four-week school, focused on two exciting key topics: quantum information science and ultracold atomic physics.
Publisher: Lecture Notes of the Les Houch
ISBN: 0199603650
Category : Science
Languages : en
Pages : 663
Book Description
Since 1951, the prestigious Les Houches summer school has given rigorous graduate programmes in France. In July 2009, the first Les Houches school outside Europe took place in Singapore. This volume gathers the lectures conducted at the four-week school, focused on two exciting key topics: quantum information science and ultracold atomic physics.
High-frequency Electrodynamics
Author: Boris Z. Katsenelenbaum
Publisher: John Wiley & Sons
ISBN: 3527608303
Category : Science
Languages : en
Pages : 342
Book Description
This first book to develop the theoretical basics from the concept of guided wave optics is all set to become a standard in fundamental concepts of electromagnetic waves within the field of telecommunications. Maxwell equations Plane waves Closed waveguides Closed Resonators Open Lines Backgrounds of Antenna Theory Diffraction on Metallic and Dielectric Objects Complementary References With its chapters on high frequency waveguides this book is aimed at both scientists and professionals in electrical engineering and telecommunications.
Publisher: John Wiley & Sons
ISBN: 3527608303
Category : Science
Languages : en
Pages : 342
Book Description
This first book to develop the theoretical basics from the concept of guided wave optics is all set to become a standard in fundamental concepts of electromagnetic waves within the field of telecommunications. Maxwell equations Plane waves Closed waveguides Closed Resonators Open Lines Backgrounds of Antenna Theory Diffraction on Metallic and Dielectric Objects Complementary References With its chapters on high frequency waveguides this book is aimed at both scientists and professionals in electrical engineering and telecommunications.
Radio Science
Japanese Science and Technology, 1983-1984
Author: United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1080
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1080
Book Description