Author: Olga Sokolova
Publisher: CRC Press
ISBN: 1000350576
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
Geomagnetic Disturbances Impacts on Power Systems: Risk Analysis & Mitigation Strategies provides a full risk assessment tool for assessing power systems confronted geomagnetic disturbances (GMDs) and specifies mitigation opportunities for various stakeholders. “This book deals comprehensively with the threat of solar storms on the world’s power systems. It provides a context to GMDs with respect to other natural hazards, and describes methods to evaluate a particular grid’s risk factors in a straightforward fashion. This is extremely useful to power grid operators, as they are not experts in the field of space weather, but they must be able to deal with its impacts. This is the critical message of this extremely valuable book.” – William A. Radasky, Ph.D., P.E., IEEE Life Fellow, Metatech Corporation, California USAAimed at risk engineers, policy-makers, technical experts and non-specialists such as power system operators, this book seeks to provide an insight into the GMD as a natural hazard and to perform the risk assessment of its potential impacts on the power systems as critical infrastructures. The reader gets familiar with how the Sun can endanger ground-based technological systems and the physics of solar activity manifestation on the Earth as Geomagnetically Induced Currents (GICs). The reaction of power systems to GMDs and mitigation strategies aiming at reducing and controlling the risks are then addressed. The GMD mitigation strategies, the power systems critical factors analysis, the high-risk zones identification and an estimation of economic loss, which is a valuable input for the (re)insurance sector, are also brought to the attention of the reader. Thereby, this book provides a full risk assessment tool for assessing power systems confronted with space weather risks. Key features: • Brings together interdisciplinary perspectives on the topic in one, cohesive book • Practical guideline on mitigation actions for diverse users and even non-specialists • Dealing comprehensively with the threat of geomagnetic disturbance on the worlds power systems • Introducing unique methods to evaluate a particular system risk factors in a straightforward fashion Authors Olga Sokolova, Ph.D., is a risk analyst and electrical engineer with expertise in the domain of critical infrastructure risk assessment to natural catastrophes. Nikolay Korovkin, Ph.D., is a full professor and head of Theoretic Electrical Engineering Department at Peter the Great Saint-Petersburg Polytechnic University (SPbPU). Masashi Hayakawa, Ph.D., is an emeritus professor of the University of Electro-Communications, and also CEO of Hayakawa Institute of Seismo Electromagnetics, Co.Ltd.
Geomagnetic Disturbances Impacts on Power Systems
Author: Olga Sokolova
Publisher: CRC Press
ISBN: 1000350576
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
Geomagnetic Disturbances Impacts on Power Systems: Risk Analysis & Mitigation Strategies provides a full risk assessment tool for assessing power systems confronted geomagnetic disturbances (GMDs) and specifies mitigation opportunities for various stakeholders. “This book deals comprehensively with the threat of solar storms on the world’s power systems. It provides a context to GMDs with respect to other natural hazards, and describes methods to evaluate a particular grid’s risk factors in a straightforward fashion. This is extremely useful to power grid operators, as they are not experts in the field of space weather, but they must be able to deal with its impacts. This is the critical message of this extremely valuable book.” – William A. Radasky, Ph.D., P.E., IEEE Life Fellow, Metatech Corporation, California USAAimed at risk engineers, policy-makers, technical experts and non-specialists such as power system operators, this book seeks to provide an insight into the GMD as a natural hazard and to perform the risk assessment of its potential impacts on the power systems as critical infrastructures. The reader gets familiar with how the Sun can endanger ground-based technological systems and the physics of solar activity manifestation on the Earth as Geomagnetically Induced Currents (GICs). The reaction of power systems to GMDs and mitigation strategies aiming at reducing and controlling the risks are then addressed. The GMD mitigation strategies, the power systems critical factors analysis, the high-risk zones identification and an estimation of economic loss, which is a valuable input for the (re)insurance sector, are also brought to the attention of the reader. Thereby, this book provides a full risk assessment tool for assessing power systems confronted with space weather risks. Key features: • Brings together interdisciplinary perspectives on the topic in one, cohesive book • Practical guideline on mitigation actions for diverse users and even non-specialists • Dealing comprehensively with the threat of geomagnetic disturbance on the worlds power systems • Introducing unique methods to evaluate a particular system risk factors in a straightforward fashion Authors Olga Sokolova, Ph.D., is a risk analyst and electrical engineer with expertise in the domain of critical infrastructure risk assessment to natural catastrophes. Nikolay Korovkin, Ph.D., is a full professor and head of Theoretic Electrical Engineering Department at Peter the Great Saint-Petersburg Polytechnic University (SPbPU). Masashi Hayakawa, Ph.D., is an emeritus professor of the University of Electro-Communications, and also CEO of Hayakawa Institute of Seismo Electromagnetics, Co.Ltd.
Publisher: CRC Press
ISBN: 1000350576
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
Geomagnetic Disturbances Impacts on Power Systems: Risk Analysis & Mitigation Strategies provides a full risk assessment tool for assessing power systems confronted geomagnetic disturbances (GMDs) and specifies mitigation opportunities for various stakeholders. “This book deals comprehensively with the threat of solar storms on the world’s power systems. It provides a context to GMDs with respect to other natural hazards, and describes methods to evaluate a particular grid’s risk factors in a straightforward fashion. This is extremely useful to power grid operators, as they are not experts in the field of space weather, but they must be able to deal with its impacts. This is the critical message of this extremely valuable book.” – William A. Radasky, Ph.D., P.E., IEEE Life Fellow, Metatech Corporation, California USAAimed at risk engineers, policy-makers, technical experts and non-specialists such as power system operators, this book seeks to provide an insight into the GMD as a natural hazard and to perform the risk assessment of its potential impacts on the power systems as critical infrastructures. The reader gets familiar with how the Sun can endanger ground-based technological systems and the physics of solar activity manifestation on the Earth as Geomagnetically Induced Currents (GICs). The reaction of power systems to GMDs and mitigation strategies aiming at reducing and controlling the risks are then addressed. The GMD mitigation strategies, the power systems critical factors analysis, the high-risk zones identification and an estimation of economic loss, which is a valuable input for the (re)insurance sector, are also brought to the attention of the reader. Thereby, this book provides a full risk assessment tool for assessing power systems confronted with space weather risks. Key features: • Brings together interdisciplinary perspectives on the topic in one, cohesive book • Practical guideline on mitigation actions for diverse users and even non-specialists • Dealing comprehensively with the threat of geomagnetic disturbance on the worlds power systems • Introducing unique methods to evaluate a particular system risk factors in a straightforward fashion Authors Olga Sokolova, Ph.D., is a risk analyst and electrical engineer with expertise in the domain of critical infrastructure risk assessment to natural catastrophes. Nikolay Korovkin, Ph.D., is a full professor and head of Theoretic Electrical Engineering Department at Peter the Great Saint-Petersburg Polytechnic University (SPbPU). Masashi Hayakawa, Ph.D., is an emeritus professor of the University of Electro-Communications, and also CEO of Hayakawa Institute of Seismo Electromagnetics, Co.Ltd.
Geomagnetically Induced Currents from the Sun to the Power Grid
Author: Jennifer L. Gannon
Publisher: John Wiley & Sons
ISBN: 1119434343
Category : Science
Languages : en
Pages : 271
Book Description
An introduction to geomagnetic storms and the hazards they pose at the Earth’s surface Geomagnetic storms are a type of space weather event that can create Geomagnetically Induced Currents (GICs) which, once they reach Earth’s surface, can interfere with power grids and transport infrastructure. Understanding the characteristics and impacts of GICs requires scientific insights from solar physics, magnetospheric physics, aeronomy, and ionospheric physics, as well as geophysics and power engineering. Geomagnetically Induced Currents from the Sun to the Power Grid is a practical introduction for researchers and practitioners that provides tools and techniques from across these disciplines. Volume highlights include: Analysis of causes of geomagnetic storms that create GICs Data and methods used to analyze and forecast GIC hazard GIC impacts on the infrastructure of the bulk power system Analysis techniques used in different areas of GIC research New methods to validate and predict GICs in transmission systems
Publisher: John Wiley & Sons
ISBN: 1119434343
Category : Science
Languages : en
Pages : 271
Book Description
An introduction to geomagnetic storms and the hazards they pose at the Earth’s surface Geomagnetic storms are a type of space weather event that can create Geomagnetically Induced Currents (GICs) which, once they reach Earth’s surface, can interfere with power grids and transport infrastructure. Understanding the characteristics and impacts of GICs requires scientific insights from solar physics, magnetospheric physics, aeronomy, and ionospheric physics, as well as geophysics and power engineering. Geomagnetically Induced Currents from the Sun to the Power Grid is a practical introduction for researchers and practitioners that provides tools and techniques from across these disciplines. Volume highlights include: Analysis of causes of geomagnetic storms that create GICs Data and methods used to analyze and forecast GIC hazard GIC impacts on the infrastructure of the bulk power system Analysis techniques used in different areas of GIC research New methods to validate and predict GICs in transmission systems
Protection of Substation Critical Equipment Against Intentional Electromagnetic Threats
Author: Vladimir Gurevich
Publisher: John Wiley & Sons
ISBN: 1119271452
Category : Science
Languages : en
Pages : 244
Book Description
The modern microprocessor based electronic equipment most vulnerable to Intentional Destructive Electromagnetic Interferences (IDEI) includes High-Altitude Electromagnetic Pulse (HEMP) in all substation equipment. However, power equipment and especially transformers are also subject to the influence of HEMP. The book discusses problems and solutions for both kinds of substation equipment. Separated into eight chapters, the book covers: Technological progress and its consequences; Intentional Destructive Electromagnetic Interferences (IDEI); Methods and means of Digital Protective Relay (DPR) protection from electromagnetic pulse; Passive methods and means of DPR protection from electromagnetic pulse; Active methods and means of DPR protection from electromagnetic pulse; Tests of DPR resistance to IDEI impacts; Organizational and technical measures to protect DPR from HEMP; and Protection of power equipment and transformers from HEMP. Key features: Practical approach focusing on technical solutions for difficult problems. Full data on electromagnetic threats and methods of their prevention are concentrated. Addresses a gap in knowledge in the power system industry. This book emphasizes practical recommendations on protection of power substations' electric equipment from IDEI that intended for not only staff operating electric equipment, but also for manufacturers of this equipment, specialists of designing companies, managers of electric energy industry as well as for teachers and postgraduate students.
Publisher: John Wiley & Sons
ISBN: 1119271452
Category : Science
Languages : en
Pages : 244
Book Description
The modern microprocessor based electronic equipment most vulnerable to Intentional Destructive Electromagnetic Interferences (IDEI) includes High-Altitude Electromagnetic Pulse (HEMP) in all substation equipment. However, power equipment and especially transformers are also subject to the influence of HEMP. The book discusses problems and solutions for both kinds of substation equipment. Separated into eight chapters, the book covers: Technological progress and its consequences; Intentional Destructive Electromagnetic Interferences (IDEI); Methods and means of Digital Protective Relay (DPR) protection from electromagnetic pulse; Passive methods and means of DPR protection from electromagnetic pulse; Active methods and means of DPR protection from electromagnetic pulse; Tests of DPR resistance to IDEI impacts; Organizational and technical measures to protect DPR from HEMP; and Protection of power equipment and transformers from HEMP. Key features: Practical approach focusing on technical solutions for difficult problems. Full data on electromagnetic threats and methods of their prevention are concentrated. Addresses a gap in knowledge in the power system industry. This book emphasizes practical recommendations on protection of power substations' electric equipment from IDEI that intended for not only staff operating electric equipment, but also for manufacturers of this equipment, specialists of designing companies, managers of electric energy industry as well as for teachers and postgraduate students.
Protecting Electrical Equipment
Author: Vladimir Gurevich
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110636069
Category : Science
Languages : en
Pages : 563
Book Description
How do you protect electrical systems from high energy electromagnetic pulses? This book is designed for researchers who wish to design toughned systems against EMPs from high altitude sources. It discusses numerous factors affectíng the strength of EMPs as well as their impact on electronic components, devices and power electrical equipment. This book includes practical protection methods and means for evaluating their effectiveness.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110636069
Category : Science
Languages : en
Pages : 563
Book Description
How do you protect electrical systems from high energy electromagnetic pulses? This book is designed for researchers who wish to design toughned systems against EMPs from high altitude sources. It discusses numerous factors affectíng the strength of EMPs as well as their impact on electronic components, devices and power electrical equipment. This book includes practical protection methods and means for evaluating their effectiveness.
The Cosmic Connection
Author: Jeff Kanipe
Publisher: Prometheus Books
ISBN: 1591028825
Category : Science
Languages : en
Pages : 296
Book Description
In this sweeping tour of the cosmos and our place within it, acclaimed science writer Jeff Kanipe shows the many ways we are connected to the vast universe we inhabit. Long before our apelike ancestors dropped from the trees and began playing with fire, even before the Sun emerged from its chrysalis of dust and irradiated its brood of planets, numberless and nameless astronomical events affected Earth and its emerging life-forms. Our chemical makeup--from the iron in our blood to the calcium in our bones--derives from stars that lived and died hundreds of millions of years ago. Comets have showered organic molecules into our oceans, and asteroid impacts have wiped out predominant species that lived before. Tracing the whole natural history of how events in the near and far universe have influenced life on Earth today, and how they might influence life in the future, Kanipe, with unparalleled eloquence, explores a host of intriguing questions: - How the Earth's orbit and inclination have triggered past ice ages - The role ancient supernovae may have played in mass extinctions and genetic changes - How a slight but persistent dip in solar output contributed to a multicentury cooling event called the "Little Ice Age" - How ancient asteroid impacts pressed Earth's evolutionary reset button and how astronomers are striving to make sure that it won't happen again - The widespread effects that our Sun's changing galactic environment has on life and climate Kanipe also reflects upon the possible societal effects of alien contact, a type of cosmic intervention that some astronomers believe could happen within the next few decades. His elegant, jargon-free descriptions of the truly "big-picture view" of life on Earth will fascinate and inform everyone who has an interest in astronomy, the evolution of our planet, and the future of humankind.
Publisher: Prometheus Books
ISBN: 1591028825
Category : Science
Languages : en
Pages : 296
Book Description
In this sweeping tour of the cosmos and our place within it, acclaimed science writer Jeff Kanipe shows the many ways we are connected to the vast universe we inhabit. Long before our apelike ancestors dropped from the trees and began playing with fire, even before the Sun emerged from its chrysalis of dust and irradiated its brood of planets, numberless and nameless astronomical events affected Earth and its emerging life-forms. Our chemical makeup--from the iron in our blood to the calcium in our bones--derives from stars that lived and died hundreds of millions of years ago. Comets have showered organic molecules into our oceans, and asteroid impacts have wiped out predominant species that lived before. Tracing the whole natural history of how events in the near and far universe have influenced life on Earth today, and how they might influence life in the future, Kanipe, with unparalleled eloquence, explores a host of intriguing questions: - How the Earth's orbit and inclination have triggered past ice ages - The role ancient supernovae may have played in mass extinctions and genetic changes - How a slight but persistent dip in solar output contributed to a multicentury cooling event called the "Little Ice Age" - How ancient asteroid impacts pressed Earth's evolutionary reset button and how astronomers are striving to make sure that it won't happen again - The widespread effects that our Sun's changing galactic environment has on life and climate Kanipe also reflects upon the possible societal effects of alien contact, a type of cosmic intervention that some astronomers believe could happen within the next few decades. His elegant, jargon-free descriptions of the truly "big-picture view" of life on Earth will fascinate and inform everyone who has an interest in astronomy, the evolution of our planet, and the future of humankind.
Space Physics and Aeronomy, Space Weather Effects and Applications
Author: Anthea J. Coster
Publisher: John Wiley & Sons
ISBN: 111950757X
Category : Science
Languages : en
Pages : 243
Book Description
Examines how solar and terrestrial space phenomena affect sophisticated technological systems Contemporary society relies on sophisticated technologies to manage electricity distribution, communication networks, transportation safety, and myriad other systems. The successful design and operation of both ground-based and space-based systems must consider solar and terrestrial space phenomena and processes. Space Weather Effects and Applications describes the effects of space weather on various present-day technologies and explores how improved instrumentation to measure Earth's space environment can be used to more accurately forecast changes and disruptions. Volume highlights include: Damage and disruption to orbiting satellite equipment by solar particles and cosmic rays Effects of space radiation on aircraft at high altitudes and latitudes Response of radio and radar-based systems to solar bursts Disturbances to the propagation of radio waves caused by space weather How geomagnetic field changes impact ground-based systems such as pipelines Impacts of human exposure to the space radiation environment The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief
Publisher: John Wiley & Sons
ISBN: 111950757X
Category : Science
Languages : en
Pages : 243
Book Description
Examines how solar and terrestrial space phenomena affect sophisticated technological systems Contemporary society relies on sophisticated technologies to manage electricity distribution, communication networks, transportation safety, and myriad other systems. The successful design and operation of both ground-based and space-based systems must consider solar and terrestrial space phenomena and processes. Space Weather Effects and Applications describes the effects of space weather on various present-day technologies and explores how improved instrumentation to measure Earth's space environment can be used to more accurately forecast changes and disruptions. Volume highlights include: Damage and disruption to orbiting satellite equipment by solar particles and cosmic rays Effects of space radiation on aircraft at high altitudes and latitudes Response of radio and radar-based systems to solar bursts Disturbances to the propagation of radio waves caused by space weather How geomagnetic field changes impact ground-based systems such as pipelines Impacts of human exposure to the space radiation environment The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief
What is Space Weather and who Should Forecast It?
Author: United States. Congress. House. Committee on Science. Subcommittee on Environment, Technology, and Standards
Publisher:
ISBN:
Category : Space environment
Languages : en
Pages : 160
Book Description
Publisher:
ISBN:
Category : Space environment
Languages : en
Pages : 160
Book Description
Electric Power Generation, Transmission, and Distribution
Author: Leonard L. Grigsby
Publisher: CRC Press
ISBN: 1420009257
Category : Science
Languages : en
Pages : 514
Book Description
Part of the second edition of The Electric Power Engineering Handbook, Electric Power Generation, Transmission, and Distribution offers focused and detailed coverage of all aspects concerning the conventional and nonconventional methods of power generation, transmission and distribution systems, electric power utilization, and power quality. Contri
Publisher: CRC Press
ISBN: 1420009257
Category : Science
Languages : en
Pages : 514
Book Description
Part of the second edition of The Electric Power Engineering Handbook, Electric Power Generation, Transmission, and Distribution offers focused and detailed coverage of all aspects concerning the conventional and nonconventional methods of power generation, transmission and distribution systems, electric power utilization, and power quality. Contri
Enhancing the Resilience of the Nation's Electricity System
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309463106
Category : Science
Languages : en
Pages : 171
Book Description
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.
Publisher: National Academies Press
ISBN: 0309463106
Category : Science
Languages : en
Pages : 171
Book Description
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.