Elastic Plastic Waves for Combined Stresses PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Elastic Plastic Waves for Combined Stresses PDF full book. Access full book title Elastic Plastic Waves for Combined Stresses by Stanford University. Department of Applied Mechanics. Download full books in PDF and EPUB format.

Elastic Plastic Waves for Combined Stresses

Elastic Plastic Waves for Combined Stresses PDF Author: Stanford University. Department of Applied Mechanics
Publisher:
ISBN:
Category :
Languages : en
Pages : 94

Book Description
The general case of plane wave propagation for combined stresses is considered in a half-space. The analysis is based on an elastic-plastic theory for an isotropic work-hardening material which satisfies a flow or incremental type law. The stress-strain curve is assumed concave towards the strain axis with possibly a bend at yield. The wave propagation analysis determines the motion to be governed by a system of quasi-linear hyperbolic equations of the first order. Two different types of loading are considered in this study--the coupled double shear loading and the combined pressure and shear. The loading functions are continuous and are assumed to be uniformly distributed over the surface for all t. Two distinct wave speeds are found in the plastic region for both loading types. For general loading plastic flow can propagate with each wave speed which may be as fast as the elastic wave speed. This is contrary to wave for a single stress component. This fact may have an important bearing on the interpretation of experiment, for which, in the past, propagation of plastic waves at elastic wave speed has been considered to indicate rate effects. Solutions of the problems are obtained by numerical integration along the characteristics on a step by step basis. The loading-unloading boundaries are determined in the x - t plane. For a simple case of the double shear problem when the components are in proporation, very good agreement is obtained between the numerical result and the known analytical solution. (Author).