Efficient Monte Carlo Methods for Light Transport in Scattering Media PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Efficient Monte Carlo Methods for Light Transport in Scattering Media PDF full book. Access full book title Efficient Monte Carlo Methods for Light Transport in Scattering Media by Wojciech Jarosz. Download full books in PDF and EPUB format.

Efficient Monte Carlo Methods for Light Transport in Scattering Media

Efficient Monte Carlo Methods for Light Transport in Scattering Media PDF Author: Wojciech Jarosz
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Book Description
In this dissertation we focus on developing accurate and efficient Monte Carlo methods for synthesizing images containing general participating media. Participating media such as clouds, smoke, and fog are ubiquitous in the world and are responsible for many important visual phenomena which are of interest to computer graphics as well as related fields. When present, the medium participates in lighting interactions by scattering or absorbing photons as they travel through the scene. Though these effects add atmosphere and considerable depth to rendered images they are computationally very expensive to simulate. Most practical solutions make simplifying assumptions about the medium in order to maintain efficiency. Unfortunately, accurate and efficient simulation of light transport in general scattering media is a challenging undertaking. In this dissertation, we address this problem by introducing two complementary techniques. We first turn to the irradiance caching method for surface illumination. Irradiance caching gains efficiency by computing an accurate representation of lighting only at a sparse set of locations and reusing these values through interpolation whenever possible. We derive the mathematical concepts that form the foundation of this approach and analyze its strengths and weaknesses. Drawing inspiration from this algorithm, we then introduce a novel volumetric radiance caching method for efficiently simulating global illumination within participating media. In developing the technique we also introduce efficient methods for evaluating the gradient of the lighting within participating media. Our gradient analysis has immediate applicability for improved interpolation quality in both surface and media-based caching methods. We also develop a novel photon mapping technique for participating media. We present a theoretical reformulation of volumetric photon mapping, which provides significant new insights. This reformulation makes it easier to qualify the error introduced by the radiance estimate but, more importantly, also allows us to develop more efficient rendering techniques. Conventional photon mapping accelerate the computation of lighting at any point in the scene by performing density estimation. In contrast, our reformulation accelerates the computation of accumulated lighting along the length of entire rays. This algorithmic improvement provides for significantly reduced render times and even the potential for real-time visualization of light transport in participating media.

Efficient Monte Carlo Methods for Light Transport in Scattering Media

Efficient Monte Carlo Methods for Light Transport in Scattering Media PDF Author: Wojciech Jarosz
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Book Description
In this dissertation we focus on developing accurate and efficient Monte Carlo methods for synthesizing images containing general participating media. Participating media such as clouds, smoke, and fog are ubiquitous in the world and are responsible for many important visual phenomena which are of interest to computer graphics as well as related fields. When present, the medium participates in lighting interactions by scattering or absorbing photons as they travel through the scene. Though these effects add atmosphere and considerable depth to rendered images they are computationally very expensive to simulate. Most practical solutions make simplifying assumptions about the medium in order to maintain efficiency. Unfortunately, accurate and efficient simulation of light transport in general scattering media is a challenging undertaking. In this dissertation, we address this problem by introducing two complementary techniques. We first turn to the irradiance caching method for surface illumination. Irradiance caching gains efficiency by computing an accurate representation of lighting only at a sparse set of locations and reusing these values through interpolation whenever possible. We derive the mathematical concepts that form the foundation of this approach and analyze its strengths and weaknesses. Drawing inspiration from this algorithm, we then introduce a novel volumetric radiance caching method for efficiently simulating global illumination within participating media. In developing the technique we also introduce efficient methods for evaluating the gradient of the lighting within participating media. Our gradient analysis has immediate applicability for improved interpolation quality in both surface and media-based caching methods. We also develop a novel photon mapping technique for participating media. We present a theoretical reformulation of volumetric photon mapping, which provides significant new insights. This reformulation makes it easier to qualify the error introduced by the radiance estimate but, more importantly, also allows us to develop more efficient rendering techniques. Conventional photon mapping accelerate the computation of lighting at any point in the scene by performing density estimation. In contrast, our reformulation accelerates the computation of accumulated lighting along the length of entire rays. This algorithmic improvement provides for significantly reduced render times and even the potential for real-time visualization of light transport in participating media.

Robust Monte Carlo Methods for Light Transport Simulation

Robust Monte Carlo Methods for Light Transport Simulation PDF Author: Eric Veach
Publisher:
ISBN:
Category : Computer algorithms
Languages : en
Pages : 444

Book Description


Monte Carlo Particle Transport Methods

Monte Carlo Particle Transport Methods PDF Author: I. Lux
Publisher: CRC Press
ISBN: 1351091735
Category : Science
Languages : en
Pages : 492

Book Description
With this book we try to reach several more-or-less unattainable goals namely: To compromise in a single book all the most important achievements of Monte Carlo calculations for solving neutron and photon transport problems. To present a book which discusses the same topics in the three levels known from the literature and gives us useful information for both beginners and experienced readers. It lists both well-established old techniques and also newest findings.

Monte Carlo Methods

Monte Carlo Methods PDF Author: Malvin H. Kalos
Publisher: John Wiley & Sons
ISBN: 3527626220
Category : Science
Languages : en
Pages : 215

Book Description
This introduction to Monte Carlo methods seeks to identify and study the unifying elements that underlie their effective application. Initial chapters provide a short treatment of the probability and statistics needed as background, enabling those without experience in Monte Carlo techniques to apply these ideas to their research. The book focuses on two basic themes: The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modeling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on this example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrödinger equation by random walks. The text includes sample problems that readers can solve by themselves to illustrate the content of each chapter. This is the second, completely revised and extended edition of the successful monograph, which brings the treatment up to date and incorporates the many advances in Monte Carlo techniques and their applications, while retaining the original elementary but general approach.

Robust and Efficient Monte Carlo Light Transport Simulation Using Regularizations and the Half Vector Integration Domain

Robust and Efficient Monte Carlo Light Transport Simulation Using Regularizations and the Half Vector Integration Domain PDF Author: Anton S. Kaplanyan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications PDF Author: Andreas Kling
Publisher: Springer Science & Business Media
ISBN: 3642182119
Category : Science
Languages : en
Pages : 1200

Book Description
This book focuses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications. Special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields.

Monte Carlo Principles and Neutron Transport Problems

Monte Carlo Principles and Neutron Transport Problems PDF Author: Jerome Spanier
Publisher: Courier Corporation
ISBN: 0486462935
Category : Mathematics
Languages : en
Pages : 258

Book Description
This two-part treatment introduces the general principles of the Monte Carlo method within a unified mathematical point of view, applying them to problems in neutron transport. It describes several efficiency-enhancing approaches, including the method of superposition and simulation of the adjoint equation based on reciprocity. The first half of the book presents an exposition of the fundamentals of Monte Carlo methods, examining discrete and continuous random walk processes and standard variance reduction techniques. The second half of the text focuses directly on the methods of superposition and reciprocity, illustrating their applications to specific neutron transport problems. Topics include the computation of thermal neutron fluxes and the superposition principle in resonance escape computations.

The Monte Carlo Methods in Atmospheric Optics

The Monte Carlo Methods in Atmospheric Optics PDF Author: G.I. Marchuk
Publisher: Springer
ISBN: 3540352376
Category : Science
Languages : en
Pages : 218

Book Description
This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are connected with the estimation of spatial location and time characteristics of the radiation field. The most universal method for solving those problems is the Monte Carlo method, which is a numerical simulation of the radiative-transfer process. This process can be regarded as a Markov chain of photon collisions in a medium, which result in scattering or absorption. The Monte Carlo tech nique consists in computational simulation of that chain and in constructing statistical estimates of the desired functionals. The authors of this book have contributed to the development of mathemati cal methods of simulation and to the interpretation of optical observations. A series of general method using Monte Carlo techniques has been developed. The present book includes theories and algorithms of simulation. Numerical results corroborate the possibilities and give an impressive prospect of the applications of Monte Carlo methods.

Physically Based Rendering, fourth edition

Physically Based Rendering, fourth edition PDF Author: Matt Pharr
Publisher: MIT Press
ISBN: 0262048027
Category : Computers
Languages : en
Pages : 1274

Book Description
A comprehensive update of the leading-edge computer graphics textbook that sets the standard for physically-based rendering in the industry and the field, with new material on GPU ray tracing. Photorealistic computer graphics are ubiquitous in today’s world, widely used in movies and video games as well as product design and architecture. Physically-based approaches to rendering, where an accurate modeling of the physics of light scattering is at the heart of image synthesis, offer both visual realism and predictability. Now in a comprehensively updated new edition, this best-selling computer graphics textbook sets the standard for physically-based rendering in the industry and the field. Physically Based Rendering describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. A method known as literate programming combines human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The book’s leading-edge algorithms, software, and ideas—including new material on GPU ray tracing—equip the reader to design and employ a full-featured rendering system capable of creating stunning imagery. This essential text represents the future of real-time graphics. Detailed and rigorous but accessible approach guides readers all the way from theory to practical software implementation Fourth edition features new chapter on GPU ray tracing essential for game developers The premier reference for professionals learning about and working in the field Won its authors a 2014 Academy Award for Scientific and Technical Achievement Includes a companion site complete with source code

Particle Transport Simulation with the Monte Carlo Method

Particle Transport Simulation with the Monte Carlo Method PDF Author: Leland Lavele Carter
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 132

Book Description