Ice Adhesion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ice Adhesion PDF full book. Access full book title Ice Adhesion by K. L. Mittal. Download full books in PDF and EPUB format.

Ice Adhesion

Ice Adhesion PDF Author: K. L. Mittal
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704

Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.

Ice Adhesion

Ice Adhesion PDF Author: K. L. Mittal
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704

Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.

The Mechanical Properties of Sea Ice

The Mechanical Properties of Sea Ice PDF Author: W. F. Weeks
Publisher:
ISBN:
Category : Ice mechanics
Languages : en
Pages : 100

Book Description
The review discusses the state of thinking of each of the main national groups investigating sea ice and gives an overall appraisal of the field as a whole. Emphasis is placed on (1) the physical basis for interpreting sea ice strength (phase relations, air volume, and structural considerations), (2) theoretical considerations (strength models, air bubbles and salt reinforcement, and interrelations between growth conditions and strength), (3) experimental results (tensile, flexural, shear, and compressive strength, elastic modulus, shear modulus and Poisson's ratio, time dependent effects, and creep), and (4) plate characteristics. The paper includes a review of problems in sea ice investigations, relates the chemical, crystallographic, mechanical, and physical aspects involved, and concludes by showing how to utilize this knowledge to solve practical problems. (Author).

Effect of Temperature on the Strength of Snow-ice

Effect of Temperature on the Strength of Snow-ice PDF Author: F. Donald Haynes
Publisher:
ISBN:
Category : Snow
Languages : en
Pages : 34

Book Description


Seeking Low Ice Adhesion

Seeking Low Ice Adhesion PDF Author: John M. Sayward
Publisher:
ISBN:
Category : Adhesion
Languages : en
Pages : 92

Book Description


Creep and Fracture of Ice

Creep and Fracture of Ice PDF Author: Erland M. Schulson
Publisher: Cambridge University Press
ISBN: 0521806208
Category : Science
Languages : en
Pages : 403

Book Description
The first complete account of the physics of the creep and fracture of ice, for graduates, engineers and scientists.

Conference Papers Index

Conference Papers Index PDF Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 628

Book Description
Monthly. Papers presented at recent meeting held all over the world by scientific, technical, engineering and medical groups. Sources are meeting programs and abstract publications, as well as questionnaires. Arranged under 17 subject sections, 7 of direct interest to the life scientist. Full programs of meetings listed under sections. Entry gives citation number, paper title, name, mailing address, and any ordering number assigned. Quarterly and annual indexes to subjects, authors, and programs (not available in monthly issues).

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2540

Book Description


Effect of Grain Size on the Internal Fracturing of Polycrystalline Ice

Effect of Grain Size on the Internal Fracturing of Polycrystalline Ice PDF Author: David M. Cole
Publisher:
ISBN:
Category : Acoustic emission
Languages : en
Pages : 92

Book Description
This work presents the results of a study to examine the effects of grain size of internal microfractures in polycrystalline ice. Laboratory-prepared specimens were tested under uniaxial, constant-load creep conditions at -5 C. Grain size ranged from 1.5 to 6.0 mm. This range of grain size, under an initial creep stress of 2.0 MPa, led to a significant change in the character of deformation. The finest-grained material displayed no internal cracking and typically experienced strains of 10 to the minus 2nd power at the minimum creep rate epsilon. The coarse-grained material experienced severe cracking and a drop in the strain at epsilon min to approximately 4x10 to the minus 3rd power. Extensive post-test optical analysis allowed estimation of the size distribution and number of microcracks in the tested material. These data led to the development of a relationship between the average crack size and the average grain size. Additionally, the crack size distribution, when normalized to the grain diameter, was very similar for all specimens tested. The results indicate that the average crack size is approximately one-half the average grain diameter over the stated grain size range. A dislocation pileup model is found to adequately predict the onset of internal cracking. The work employed acoustic emission techniques to monitor the fracturing rate occurred. Other topics covered in this report include creep behavior, crack healing, the effect of stress level on fracture size and the orientation of cracked grains. Theoretical aspects of the grain size effect on material behavior are also given.

Bibliography on Snow, Ice and Frozen Ground, with Abstracts

Bibliography on Snow, Ice and Frozen Ground, with Abstracts PDF Author:
Publisher:
ISBN:
Category : Frozen ground
Languages : en
Pages : 430

Book Description


Engineering Materials 2

Engineering Materials 2 PDF Author: Michael F. Ashby
Publisher: Elsevier
ISBN: 1483297217
Category : Technology & Engineering
Languages : en
Pages : 380

Book Description
Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.