Author: Jakob Wachsmuth
Publisher: American Mathematical Soc.
ISBN: 0821894897
Category : Mathematics
Languages : en
Pages : 96
Book Description
The authors consider the time-dependent Schrödinger equation on a Riemannian manifold with a potential that localizes a certain subspace of states close to a fixed submanifold . When the authors scale the potential in the directions normal to by a parameter , the solutions concentrate in an -neighborhood of . This situation occurs for example in quantum wave guides and for the motion of nuclei in electronic potential surfaces in quantum molecular dynamics. The authors derive an effective Schrödinger equation on the submanifold and show that its solutions, suitably lifted to , approximate the solutions of the original equation on up to errors of order at time . Furthermore, the authors prove that the eigenvalues of the corresponding effective Hamiltonian below a certain energy coincide up to errors of order with those of the full Hamiltonian under reasonable conditions.
Effective Hamiltonians for Constrained Quantum Systems
Author: Jakob Wachsmuth
Publisher: American Mathematical Soc.
ISBN: 0821894897
Category : Mathematics
Languages : en
Pages : 96
Book Description
The authors consider the time-dependent Schrödinger equation on a Riemannian manifold with a potential that localizes a certain subspace of states close to a fixed submanifold . When the authors scale the potential in the directions normal to by a parameter , the solutions concentrate in an -neighborhood of . This situation occurs for example in quantum wave guides and for the motion of nuclei in electronic potential surfaces in quantum molecular dynamics. The authors derive an effective Schrödinger equation on the submanifold and show that its solutions, suitably lifted to , approximate the solutions of the original equation on up to errors of order at time . Furthermore, the authors prove that the eigenvalues of the corresponding effective Hamiltonian below a certain energy coincide up to errors of order with those of the full Hamiltonian under reasonable conditions.
Publisher: American Mathematical Soc.
ISBN: 0821894897
Category : Mathematics
Languages : en
Pages : 96
Book Description
The authors consider the time-dependent Schrödinger equation on a Riemannian manifold with a potential that localizes a certain subspace of states close to a fixed submanifold . When the authors scale the potential in the directions normal to by a parameter , the solutions concentrate in an -neighborhood of . This situation occurs for example in quantum wave guides and for the motion of nuclei in electronic potential surfaces in quantum molecular dynamics. The authors derive an effective Schrödinger equation on the submanifold and show that its solutions, suitably lifted to , approximate the solutions of the original equation on up to errors of order at time . Furthermore, the authors prove that the eigenvalues of the corresponding effective Hamiltonian below a certain energy coincide up to errors of order with those of the full Hamiltonian under reasonable conditions.
Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture
Author: Joel Friedman
Publisher: American Mathematical Soc.
ISBN: 1470409887
Category : Mathematics
Languages : en
Pages : 124
Book Description
In this paper the author establishes some foundations regarding sheaves of vector spaces on graphs and their invariants, such as homology groups and their limits. He then uses these ideas to prove the Hanna Neumann Conjecture of the 1950s; in fact, he proves a strengthened form of the conjecture.
Publisher: American Mathematical Soc.
ISBN: 1470409887
Category : Mathematics
Languages : en
Pages : 124
Book Description
In this paper the author establishes some foundations regarding sheaves of vector spaces on graphs and their invariants, such as homology groups and their limits. He then uses these ideas to prove the Hanna Neumann Conjecture of the 1950s; in fact, he proves a strengthened form of the conjecture.
Polynomial Approximation on Polytopes
Author: Vilmos Totik
Publisher: American Mathematical Soc.
ISBN: 1470416662
Category : Mathematics
Languages : en
Pages : 124
Book Description
Polynomial approximation on convex polytopes in is considered in uniform and -norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the -case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate -functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
Publisher: American Mathematical Soc.
ISBN: 1470416662
Category : Mathematics
Languages : en
Pages : 124
Book Description
Polynomial approximation on convex polytopes in is considered in uniform and -norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the -case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate -functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
A Geometric Theory for Hypergraph Matching
Author: Peter Keevash
Publisher: American Mathematical Soc.
ISBN: 1470409658
Category : Mathematics
Languages : en
Pages : 108
Book Description
The authors develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: `space barriers' from convex geometry, and `divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, they introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. They determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, their main result establishes the stability property: under the same degree assumption, if there is no perfect matching then there must be a space or divisibility barrier. This allows the use of the stability method in proving exact results. Besides recovering previous results, the authors apply our theory to the solution of two open problems on hypergraph packings: the minimum degree threshold for packing tetrahedra in -graphs, and Fischer's conjecture on a multipartite form of the Hajnal-Szemerédi Theorem. Here they prove the exact result for tetrahedra and the asymptotic result for Fischer's conjecture; since the exact result for the latter is technical they defer it to a subsequent paper.
Publisher: American Mathematical Soc.
ISBN: 1470409658
Category : Mathematics
Languages : en
Pages : 108
Book Description
The authors develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: `space barriers' from convex geometry, and `divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, they introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. They determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, their main result establishes the stability property: under the same degree assumption, if there is no perfect matching then there must be a space or divisibility barrier. This allows the use of the stability method in proving exact results. Besides recovering previous results, the authors apply our theory to the solution of two open problems on hypergraph packings: the minimum degree threshold for packing tetrahedra in -graphs, and Fischer's conjecture on a multipartite form of the Hajnal-Szemerédi Theorem. Here they prove the exact result for tetrahedra and the asymptotic result for Fischer's conjecture; since the exact result for the latter is technical they defer it to a subsequent paper.
The Grothendieck Inequality Revisited
Author: Ron Blei
Publisher: American Mathematical Soc.
ISBN: 0821898558
Category : Mathematics
Languages : en
Pages : 102
Book Description
The classical Grothendieck inequality is viewed as a statement about representations of functions of two variables over discrete domains by integrals of two-fold products of functions of one variable. An analogous statement is proved, concerning continuous functions of two variables over general topological domains. The main result is the construction of a continuous map $\Phi$ from $l^2(A)$ into $L^2(\Omega_A, \mathbb{P}_A)$, where $A$ is a set, $\Omega_A = \{-1,1\}^A$, and $\mathbb{P}_A$ is the uniform probability measure on $\Omega_A$.
Publisher: American Mathematical Soc.
ISBN: 0821898558
Category : Mathematics
Languages : en
Pages : 102
Book Description
The classical Grothendieck inequality is viewed as a statement about representations of functions of two variables over discrete domains by integrals of two-fold products of functions of one variable. An analogous statement is proved, concerning continuous functions of two variables over general topological domains. The main result is the construction of a continuous map $\Phi$ from $l^2(A)$ into $L^2(\Omega_A, \mathbb{P}_A)$, where $A$ is a set, $\Omega_A = \{-1,1\}^A$, and $\mathbb{P}_A$ is the uniform probability measure on $\Omega_A$.
Shock Waves in Conservation Laws with Physical Viscosity
Author: Tai-Ping Liu
Publisher: American Mathematical Soc.
ISBN: 1470410168
Category : Mathematics
Languages : en
Pages : 180
Book Description
The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions. In particular, they show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small but independent. The authors' assumptions on the viscosity matrix are general so that their results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. The authors' analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that the author can close the nonlinear term through Duhamel's principle.
Publisher: American Mathematical Soc.
ISBN: 1470410168
Category : Mathematics
Languages : en
Pages : 180
Book Description
The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions. In particular, they show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small but independent. The authors' assumptions on the viscosity matrix are general so that their results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. The authors' analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that the author can close the nonlinear term through Duhamel's principle.
Julia Sets and Complex Singularities of Free Energies
Author: Jianyong Qiao
Publisher: American Mathematical Soc.
ISBN: 1470409828
Category : Mathematics
Languages : en
Pages : 102
Book Description
The author studies a family of renormalization transformations of generalized diamond hierarchical Potts models through complex dynamical systems. He proves that the Julia set (unstable set) of a renormalization transformation, when it is treated as a complex dynamical system, is the set of complex singularities of the free energy in statistical mechanics. He gives a sufficient and necessary condition for the Julia sets to be disconnected. Furthermore, he proves that all Fatou components (components of the stable sets) of this family of renormalization transformations are Jordan domains with at most one exception which is completely invariant. In view of the problem in physics about the distribution of these complex singularities, the author proves here a new type of distribution: the set of these complex singularities in the real temperature domain could contain an interval. Finally, the author studies the boundary behavior of the first derivative and second derivative of the free energy on the Fatou component containing the infinity. He also gives an explicit value of the second order critical exponent of the free energy for almost every boundary point.
Publisher: American Mathematical Soc.
ISBN: 1470409828
Category : Mathematics
Languages : en
Pages : 102
Book Description
The author studies a family of renormalization transformations of generalized diamond hierarchical Potts models through complex dynamical systems. He proves that the Julia set (unstable set) of a renormalization transformation, when it is treated as a complex dynamical system, is the set of complex singularities of the free energy in statistical mechanics. He gives a sufficient and necessary condition for the Julia sets to be disconnected. Furthermore, he proves that all Fatou components (components of the stable sets) of this family of renormalization transformations are Jordan domains with at most one exception which is completely invariant. In view of the problem in physics about the distribution of these complex singularities, the author proves here a new type of distribution: the set of these complex singularities in the real temperature domain could contain an interval. Finally, the author studies the boundary behavior of the first derivative and second derivative of the free energy on the Fatou component containing the infinity. He also gives an explicit value of the second order critical exponent of the free energy for almost every boundary point.
A Homology Theory for Smale Spaces
Author: Ian F. Putnam
Publisher: American Mathematical Soc.
ISBN: 1470409097
Category : Mathematics
Languages : en
Pages : 136
Book Description
The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.
Publisher: American Mathematical Soc.
ISBN: 1470409097
Category : Mathematics
Languages : en
Pages : 136
Book Description
The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.
Imprimitive Irreducible Modules for Finite Quasisimple Groups
Author: Gerhard Hiss
Publisher: American Mathematical Soc.
ISBN: 1470409607
Category : Mathematics
Languages : en
Pages : 126
Book Description
Motivated by the maximal subgroup problem of the finite classical groups the authors begin the classification of imprimitive irreducible modules of finite quasisimple groups over algebraically closed fields K. A module of a group G over K is imprimitive, if it is induced from a module of a proper subgroup of G. The authors obtain their strongest results when char(K)=0, although much of their analysis carries over into positive characteristic. If G is a finite quasisimple group of Lie type, they prove that an imprimitive irreducible KG-module is Harish-Chandra induced. This being true for \rm char(K) different from the defining characteristic of G, the authors specialize to the case char(K)=0 and apply Harish-Chandra philosophy to classify irreducible Harish-Chandra induced modules in terms of Harish-Chandra series, as well as in terms of Lusztig series. The authors determine the asymptotic proportion of the irreducible imprimitive KG-modules, when G runs through a series groups of fixed (twisted) Lie type. One of the surprising outcomes of their investigations is the fact that these proportions tend to 1, if the Lie rank of the groups tends to infinity. For exceptional groups G of Lie type of small rank, and for sporadic groups G, the authors determine all irreducible imprimitive KG-modules for arbitrary characteristic of K.
Publisher: American Mathematical Soc.
ISBN: 1470409607
Category : Mathematics
Languages : en
Pages : 126
Book Description
Motivated by the maximal subgroup problem of the finite classical groups the authors begin the classification of imprimitive irreducible modules of finite quasisimple groups over algebraically closed fields K. A module of a group G over K is imprimitive, if it is induced from a module of a proper subgroup of G. The authors obtain their strongest results when char(K)=0, although much of their analysis carries over into positive characteristic. If G is a finite quasisimple group of Lie type, they prove that an imprimitive irreducible KG-module is Harish-Chandra induced. This being true for \rm char(K) different from the defining characteristic of G, the authors specialize to the case char(K)=0 and apply Harish-Chandra philosophy to classify irreducible Harish-Chandra induced modules in terms of Harish-Chandra series, as well as in terms of Lusztig series. The authors determine the asymptotic proportion of the irreducible imprimitive KG-modules, when G runs through a series groups of fixed (twisted) Lie type. One of the surprising outcomes of their investigations is the fact that these proportions tend to 1, if the Lie rank of the groups tends to infinity. For exceptional groups G of Lie type of small rank, and for sporadic groups G, the authors determine all irreducible imprimitive KG-modules for arbitrary characteristic of K.
The Optimal Version of Hua's Fundamental Theorem of Geometry of Rectangular Matrices
Author: Peter Šemrl
Publisher: American Mathematical Soc.
ISBN: 0821898450
Category : Mathematics
Languages : en
Pages : 86
Book Description
Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements. There are three natural questions. Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only and still get the same conclusion? Can we relax the bijectivity assumption? Can we obtain an analogous result for maps acting between the spaces of rectangular matrices of different sizes? A division ring is said to be EAS if it is not isomorphic to any proper subring. For matrices over EAS division rings the author solves all three problems simultaneously, thus obtaining the optimal version of Hua's theorem. In the case of general division rings he gets such an optimal result only for square matrices and gives examples showing that it cannot be extended to the non-square case.
Publisher: American Mathematical Soc.
ISBN: 0821898450
Category : Mathematics
Languages : en
Pages : 86
Book Description
Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements. There are three natural questions. Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only and still get the same conclusion? Can we relax the bijectivity assumption? Can we obtain an analogous result for maps acting between the spaces of rectangular matrices of different sizes? A division ring is said to be EAS if it is not isomorphic to any proper subring. For matrices over EAS division rings the author solves all three problems simultaneously, thus obtaining the optimal version of Hua's theorem. In the case of general division rings he gets such an optimal result only for square matrices and gives examples showing that it cannot be extended to the non-square case.