Effective and Annotation Efficient Deep Learning for Image Understanding PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Effective and Annotation Efficient Deep Learning for Image Understanding PDF full book. Access full book title Effective and Annotation Efficient Deep Learning for Image Understanding by Spyridon Gidaris. Download full books in PDF and EPUB format.

Effective and Annotation Efficient Deep Learning for Image Understanding

Effective and Annotation Efficient Deep Learning for Image Understanding PDF Author: Spyridon Gidaris
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Recent development in deep learning have achieved impressive results on image understanding tasks. However, designing deep learning architectures that will effectively solve the image understanding tasks of interest is far from trivial. Even more, the success of deep learning approaches heavily relies on the availability of large-size manually labeled (by humans) data. In this context, the objective of this dissertation is to explore deep learning based approaches for core image understanding tasks that would allow to increase the effectiveness with which they are performed as well as to make their learning process more annotation efficient, i.e., less dependent on the availability of large amounts of manually labeled training data. We first focus on improving the state-of-the-art on object detection. More specifically, we attempt to boost the ability of object detection systems to recognize (even difficult) object instances by proposing a multi-region and semantic segmentation-aware ConvNet-based representation that is able to capture a diverse set of discriminative appearance factors. Also, we aim to improve the localization accuracy of object detection systems by proposing iterative detection schemes and a novel localization model for estimating the bounding box of the objects. We demonstrate that the proposed technical novelties lead to significant improvements in the object detection performance of PASCAL and MS COCO benchmarks. Regarding the pixel-wise image labeling problem, we explored a family of deep neural network architectures that perform structured prediction by learning to (iteratively) improve some initial estimates of the output labels. The goal is to identify which is the optimal architecture for implementing such deep structured prediction models. In this context, we propose to decompose the label improvement task into three steps: 1) detecting the initial label estimates that are incorrect, 2) replacing the incorrect labels with new ones, and finally 3) refining the renewed labels by predicting residual corrections w.r.t. them. We evaluate the explored architectures on the disparity estimation task and we demonstrate that the proposed architecture achieves state-of-the-art results on the KITTI 2015 benchmark.In order to accomplish our goal for annotation efficient learning, we proposed a self-supervised learning approach that learns ConvNet-based image representations by training the ConvNet to recognize the 2d rotation that is applied to the image that it gets as input. We empirically demonstrate that this apparently simple task actually provides a very powerful supervisory signal for semantic feature learning. Specifically, the image features learned from this task exhibit very good results when transferred on the visual tasks of object detection and semantic segmentation, surpassing prior unsupervised learning approaches and thus narrowing the gap with the supervised case.Finally, also in the direction of annotation efficient learning, we proposed a novel few-shot object recognition system that after training is capable to dynamically learn novel categories from only a few data (e.g., only one or five training examples) while it does not forget the categories on which it was trained on. In order to implement the proposed recognition system we introduced two technical novelties, an attention based few-shot classification weight generator, and implementing the classifier of the ConvNet based recognition model as a cosine similarity function between feature representations and classification vectors. We demonstrate that the proposed approach achieved state-of-the-art results on relevant few-shot benchmarks.

Effective and Annotation Efficient Deep Learning for Image Understanding

Effective and Annotation Efficient Deep Learning for Image Understanding PDF Author: Spyridon Gidaris
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Recent development in deep learning have achieved impressive results on image understanding tasks. However, designing deep learning architectures that will effectively solve the image understanding tasks of interest is far from trivial. Even more, the success of deep learning approaches heavily relies on the availability of large-size manually labeled (by humans) data. In this context, the objective of this dissertation is to explore deep learning based approaches for core image understanding tasks that would allow to increase the effectiveness with which they are performed as well as to make their learning process more annotation efficient, i.e., less dependent on the availability of large amounts of manually labeled training data. We first focus on improving the state-of-the-art on object detection. More specifically, we attempt to boost the ability of object detection systems to recognize (even difficult) object instances by proposing a multi-region and semantic segmentation-aware ConvNet-based representation that is able to capture a diverse set of discriminative appearance factors. Also, we aim to improve the localization accuracy of object detection systems by proposing iterative detection schemes and a novel localization model for estimating the bounding box of the objects. We demonstrate that the proposed technical novelties lead to significant improvements in the object detection performance of PASCAL and MS COCO benchmarks. Regarding the pixel-wise image labeling problem, we explored a family of deep neural network architectures that perform structured prediction by learning to (iteratively) improve some initial estimates of the output labels. The goal is to identify which is the optimal architecture for implementing such deep structured prediction models. In this context, we propose to decompose the label improvement task into three steps: 1) detecting the initial label estimates that are incorrect, 2) replacing the incorrect labels with new ones, and finally 3) refining the renewed labels by predicting residual corrections w.r.t. them. We evaluate the explored architectures on the disparity estimation task and we demonstrate that the proposed architecture achieves state-of-the-art results on the KITTI 2015 benchmark.In order to accomplish our goal for annotation efficient learning, we proposed a self-supervised learning approach that learns ConvNet-based image representations by training the ConvNet to recognize the 2d rotation that is applied to the image that it gets as input. We empirically demonstrate that this apparently simple task actually provides a very powerful supervisory signal for semantic feature learning. Specifically, the image features learned from this task exhibit very good results when transferred on the visual tasks of object detection and semantic segmentation, surpassing prior unsupervised learning approaches and thus narrowing the gap with the supervised case.Finally, also in the direction of annotation efficient learning, we proposed a novel few-shot object recognition system that after training is capable to dynamically learn novel categories from only a few data (e.g., only one or five training examples) while it does not forget the categories on which it was trained on. In order to implement the proposed recognition system we introduced two technical novelties, an attention based few-shot classification weight generator, and implementing the classifier of the ConvNet based recognition model as a cosine similarity function between feature representations and classification vectors. We demonstrate that the proposed approach achieved state-of-the-art results on relevant few-shot benchmarks.

Deep Learning in Medical Image Analysis

Deep Learning in Medical Image Analysis PDF Author: Gobert Lee
Publisher: Springer Nature
ISBN: 3030331288
Category : Medical
Languages : en
Pages : 184

Book Description
This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis PDF Author: S. Kevin Zhou
Publisher: Academic Press
ISBN: 0323858880
Category : Computers
Languages : en
Pages : 544

Book Description
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis. · Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache

Interpretable and Annotation-Efficient Learning for Medical Image Computing

Interpretable and Annotation-Efficient Learning for Medical Image Computing PDF Author: Jaime Cardoso
Publisher: Springer Nature
ISBN: 3030611663
Category : Computers
Languages : en
Pages : 292

Book Description
This book constitutes the refereed joint proceedings of the Third International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, the Second International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2020, and the 5th International Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, LABELS 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The 8 full papers presented at iMIMIC 2020, 11 full papers to MIL3ID 2020, and the 10 full papers presented at LABELS 2020 were carefully reviewed and selected from 16 submissions to iMIMIC, 28 to MIL3ID, and 12 submissions to LABELS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. MIL3ID deals with best practices in medical image learning with label scarcity and data imperfection. The LABELS papers present a variety of approaches for dealing with a limited number of labels, from semi-supervised learning to crowdsourcing.

Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments

Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments PDF Author: Raj, Alex Noel Joseph
Publisher: IGI Global
ISBN: 1799866920
Category : Computers
Languages : en
Pages : 381

Book Description
Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.

Hands-On Deep Learning for Images with TensorFlow

Hands-On Deep Learning for Images with TensorFlow PDF Author: Will Ballard
Publisher:
ISBN: 9781789538670
Category : Computers
Languages : en
Pages : 96

Book Description
Explore TensorFlow's capabilities to perform efficient deep learning on images Key Features Discover image processing for machine vision Build an effective image classification system using the power of CNNs Leverage TensorFlow's capabilities to perform efficient deep learning Book Description TensorFlow is Google's popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow's capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. What you will learn Build machine learning models particularly focused on the MNIST digits Work with Docker and Keras to build an image classifier Understand natural language models to process text and images Prepare your dataset for machine learning Create classical, convolutional, and deep neural networks Create a RESTful image classification server Who this book is for Hands-On Deep Learning for Images with TensorFlow is for you if you are an application developer, data scientist, or machine learning practitioner looking to integrate machine learning into application software and master deep learning by implementing practical projects in TensorFlow. Knowledge of Python programming and basics of deep learning are required to get the best out of this book.

Deep Learning Applications in Image Analysis

Deep Learning Applications in Image Analysis PDF Author: Sanjiban Sekhar Roy
Publisher: Springer Nature
ISBN: 9819937841
Category : Technology & Engineering
Languages : en
Pages : 218

Book Description
This book provides state-of-the-art coverage of deep learning applications in image analysis. The book demonstrates various deep learning algorithms that can offer practical solutions for various image-related problems; also how these algorithms are used by scientists and scholars in industry and academia. This includes autoencoder and deep convolutional generative adversarial network in improving classification performance of Bangla handwritten characters, dealing with deep learning-based approaches using feature selection methods for automatic diagnosis of covid-19 disease from x-ray images, imbalance image data sets of classification, image captioning using deep transfer learning, developing a vehicle over speed detection system, creating an intelligent system for video-based proximity analysis, building a melanoma cancer detection system using deep learning, plant diseases classification using AlexNet, dealing with hyperspectral images using deep learning, chest x-ray image classification of pneumonia disease using efficient net and inceptionv3. The book also addresses the difficulty of implementing deep learning in terms of computation time and the complexity of reasoning and modelling different types of data where information is currently encoded. Each chapter has the application of various new or existing deep learning models such as Deep Neural Network (DNN) and Deep Convolutional Neural Networks (DCNN). The detailed utilization of deep learning packages that are available in MATLAB, Python and R programming environments have also been discussed, therefore, the readers will get to know about the practical implementation of deep learning as well. The content of this book is presented in a simple and lucid style for professionals, nonprofessionals, scientists, and students interested in the research area of deep learning applications in image analysis.

Towards Efficient Deep Learning for Computer Vision

Towards Efficient Deep Learning for Computer Vision PDF Author: Sudhanshu Mittal
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Abstract: Deep learning models require significant resources to deploy, limiting their widespread adoption. The aim of this thesis is to address this issue by proposing methods to make deep learning models more efficient for training and deployment. One important aspect of machine learning is the ability to understand visual information from limited labeled data because large-scale annotation processes can be very expensive or infeasible. The first part of the thesis proposes methods to improve label efficiency for deep learning-based computer vision tasks focusing on two approaches - semi-supervised learning and active learning. For semi-supervised learning, the thesis proposes an approach for semi-supervised semantic segmentation that learns from limited pixel-wise annotated samples while exploiting additional annotation-free images. The proposed dual-branch approach reduces both the low-level and high-level artifacts typically encountered when training with few labels, and its effectiveness is demonstrated on several standard benchmarks. For active learning, the thesis emphasizes that conventional evaluation schemes used in deep active learning are either incomplete or below par. The thesis investigates several existing methods across many dimensions and finds that the studied new underlying factors are decisive in selecting the best active learning approach. The thesis also provides a comprehensive usage guide to obtain the best performance for each case. This thesis covers active learning methods for image classification and semantic segmentation tasks. Another issue with deep neural networks is catastrophic forgetting when encountering new or evolving tasks in a sequential manner. The model must be retrained with all the data or tasks encountered to avoid forgetting, thus making them unsuitable for many real-world applications. The second part of the thesis focuses on understanding and resolving catastrophic forgetting in continual learning, particularly in the Class-incremental Learning (CIL) setting. The evaluation shows that a combination of simple components can already resolve catastrophic forgetting to the same extent as more complex measures proposed in the literature. Overall, this thesis provides streamlined approaches to improve the efficiency of deep learning systems and highlights the importance of many unexplored directions for improved realistic evaluation

Machine Learning in Image Analysis and Pattern Recognition

Machine Learning in Image Analysis and Pattern Recognition PDF Author: Munish Kumar
Publisher: MDPI
ISBN: 3036517146
Category : Technology & Engineering
Languages : en
Pages : 112

Book Description
This book is to chart the progress in applying machine learning, including deep learning, to a broad range of image analysis and pattern recognition problems and applications. In this book, we have assembled original research articles making unique contributions to the theory, methodology and applications of machine learning in image analysis and pattern recognition.

Advances in Deep Learning for Medical Image Analysis

Advances in Deep Learning for Medical Image Analysis PDF Author: Archana Mire
Publisher: CRC Press
ISBN: 1000575950
Category : Technology & Engineering
Languages : en
Pages : 169

Book Description
This reference text introduces the classical probabilistic model, deep learning, and big data techniques for improving medical imaging and detecting various diseases. The text addresses a wide variety of application areas in medical imaging where deep learning techniques provide solutions with lesser human intervention and reduced time. It comprehensively covers important machine learning for signal analysis, deep learning techniques for cancer detection, diabetic cases, skin image analysis, Alzheimer’s disease detection, coronary disease detection, medical image forensic, fetal anomaly detection, and plant phytology. The text will serve as a useful text for graduate students and academic researchers in the fields of electronics engineering, computer science, biomedical engineering, and electrical engineering.