Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes PDF full book. Access full book title Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes by R. S. Butner. Download full books in PDF and EPUB format.

Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes

Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes PDF Author: R. S. Butner
Publisher:
ISBN:
Category : Biomass chemicals
Languages : en
Pages :

Book Description


Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes

Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes PDF Author: R. S. Butner
Publisher:
ISBN:
Category : Biomass chemicals
Languages : en
Pages :

Book Description


Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes

Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes

Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes PDF Author: Battelle Memorial Institute
Publisher:
ISBN:
Category :
Languages : en
Pages : 25

Book Description


Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes

Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes PDF Author: Battelle Memorial Institute
Publisher:
ISBN:
Category :
Languages : en
Pages : 25

Book Description


Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes

Effect of Biomass Feedstock Chemical and Physical Properties on Energy Conversion Processes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks

Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks PDF Author: J. Richard Hess
Publisher: Frontiers Media SA
ISBN: 2889634655
Category :
Languages : en
Pages : 319

Book Description
The success of lignocellulosic biofuels and biochemical industries depends upon an economic and reliable supply of quality biomass. However, research and development efforts have historically focused on the utilization of agriculturally-derived, cellulosic feedstocks without consideration of their low energy density, high variations in physical and chemical characteristics and potential supply risks in terms of availability and affordability. This Research Topic will explore strategies that enable supply chain improvements in biomass quality and consistency through blending, preprocessing, diversity and landscape design for development of conversion-ready, lignocellulosic feedstocks for production of biofuels and bio-products. Biomass variability has proven a formidable challenge to the emerging biorefining industry, impeding continuous operation and reducing yields required for economical production of lignocellulosic biofuels at scale. Conventional supply systems lack the preprocessing capabilities necessary to ensure consistent biomass feedstocks with physical and chemical properties that are compatible with supply chain operations and conversion processes. Direct coupling of conventional feedstock supply systems with sophisticated conversion systems has reduced the operability of biorefining processes to less than 50%. As the bioeconomy grows, the inherent variability of biomass resources cannot be managed by passive means alone. As such, there is a need to fully recognize the magnitude of biomass variability and uncertainty, as well as the cost of failing to design feedstock supply systems that can mitigate biomass variability and uncertainty. A paradigm shift is needed, from biorefinery designs using raw, single-resource biomass, to advanced feedstock supply systems that harness diverse biomass resources to enable supply chain resilience and development of conversion-ready feedstocks. Blending and preprocessing (e.g., drying, sorting, sizing, fractionation, leaching, densification, etc.) can mitigate variable quality and performance in diverse resources when integrated with downstream conversion systems. Decoupling feedstock supply from biorefining provides an opportunity to manage supply risks and incorporate value-added upgrading to develop feedstocks with improved convertibility and/ or market fungibility. Conversion-ready feedstocks have undergone the required preprocessing to ensure compatibility with conversion and utilization prior to delivery at the biorefinery and represent lignocellulosic biomass with physical and chemical properties that are tailored to meet the requirements of industrially-relevant handling and conversion systems.

Thermochemical Processing of Biomass

Thermochemical Processing of Biomass PDF Author: Robert C. Brown
Publisher: John Wiley & Sons
ISBN: 1119417570
Category : Science
Languages : en
Pages : 426

Book Description
A comprehensive examination of the large number of possible pathways for converting biomass into fuels and power through thermochemical processes Bringing together a widely scattered body of information into a single volume, this book provides complete coverage of the many ways that thermochemical processes are used to transform biomass into fuels, chemicals and power. Fully revised and updated, this new edition highlights the substantial progress and recent developments that have been made in this rapidly growing field since publication of the first edition and incorporates up-to-date information in each chapter. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2nd Edition incorporates two new chapters covering: condensed phased reactions of thermal deconstruction of biomass and life cycle analysis of thermochemical processing systems. It offers a new introductory chapter that provides a more comprehensive overview of thermochemical technologies. The book also features fresh perspectives from new authors covering such evolving areas as solvent liquefaction and hybrid processing. Other chapters cover combustion, gasification, fast pyrolysis, upgrading of syngas and bio-oil to liquid transportation fuels, and the economics of thermochemically producing fuels and power, and more. Features contributions by a distinguished group of European and American researchers offering a broad and unified description of thermochemical processing options for biomass Combines an overview of the current status of thermochemical biomass conversion as well as engineering aspects to appeal to the broadest audience Edited by one of Biofuels Digest’s "Top 100 People" in bioenergy for six consecutive years Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2nd Edition will appeal to all academic researchers, process chemists, and engineers working in the field of biomass conversion to fuels and chemicals. It is also an excellent book for graduate and advanced undergraduate students studying biomass, biofuels, renewable resources, and energy and power generation.

Biomass as a Sustainable Energy Source for the Future

Biomass as a Sustainable Energy Source for the Future PDF Author: Wiebren de Jong
Publisher: John Wiley & Sons
ISBN: 1118916638
Category : Science
Languages : en
Pages : 600

Book Description
Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies • Details the latest biomass characterization techniques • Explains the biochemical and thermochemical conversion processes • Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing • Describes how to mitigate the environmental risks when using biomass as fuel • Includes many problems, small projects, sample calculations and industrial application examples

Introduction to Biomass Energy Conversions

Introduction to Biomass Energy Conversions PDF Author: Sergio Capareda
Publisher: CRC Press
ISBN: 1466513330
Category : Science
Languages : en
Pages : 649

Book Description
The potential that biomass energy has to supplement traditional fuels and reduce greenhouse gas emissions has put it front and center in the plan to replace fossil-based fuels with renewable fuels. While much has been written about biomass conversions, no single textbook contains all the information needed to teach a biomass conversion course—until now. Introduction to Biomass Energy Conversions presents a comprehensive review of biomass resources available for conversion into heat, power, and biofuels. The textbook covers biomass characterization and discusses facilities, equipment, and standards (e.g. ASTM or NREL) used for analysis. It examines the range of biomass resources available for conversion and presents traditional biomass conversion processes along with extensive biomass characterization data tables, illustrations, and graphical presentations of the various biomass energy conversion processes. The author also describes how to set up a laboratory for biomass energy conversion, and presents economics and sustainability issues. Loaded with real-world examples, the text includes numerous worked examples and problems in each chapter. No one knows what the price of oil will be next year or in future decades. It is governed by many factors other than supply and demand (politics, wars, etc.), however, whatever the future of energy is, bio-fuels will play an important role. This technical guide prepares students for managing bio-refineries, no matter what type of bio-fuel is produced. It also provides practicing engineers with a resource for starting a small bio-fuel business.

Densification Impact On Raw, Chemically And Thermally Pretreated Biomass: Physical Properties And Biofuels Production

Densification Impact On Raw, Chemically And Thermally Pretreated Biomass: Physical Properties And Biofuels Production PDF Author: Jaya Shankar Tumuluru
Publisher: World Scientific
ISBN: 1800613806
Category : Technology & Engineering
Languages : en
Pages : 346

Book Description
First-generation ethanol plants did not have many operational challenges as the feedstocks (e.g., corn) used for fuel production are dense, stable, storable, and shippable commodity-type products with fewer conversion challenges. These feedstock properties led the first-generation large-scale biorefineries to grow exponentially. In the second-generation biofuels, the feedstocks used are agricultural and forest residues, dedicated energy crops, industrial wastes, and municipal solid waste. When the industry tested these feedstocks for biofuel production, they faced flowability, storage, transportation, and conversion issues. One way to overcome some of the feeding, handling, transportation, and variable moisture challenges is to densify the biomass. Pellet mills and briquette presses are commonly used to produce densified products. The densified products have uniform size, shape, higher bulk density, and better downstream conversion performance. Also, the densified products are aerobically stable and can be stored for longer durations without any loss in quality.This book's focus is on understanding how the densification process variables, biomass types and their blends, mechanical preprocessing, and thermal and chemical pretreatment methods impact the quality of the densified products produced for biofuel production. Finally, the book also explores the conversion performance of densified biomass for biofuel production.