Early Implementation of SiC Cladding Fuel Performance Models in BISON. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Early Implementation of SiC Cladding Fuel Performance Models in BISON. PDF full book. Access full book title Early Implementation of SiC Cladding Fuel Performance Models in BISON. by . Download full books in PDF and EPUB format.

Early Implementation of SiC Cladding Fuel Performance Models in BISON.

Early Implementation of SiC Cladding Fuel Performance Models in BISON. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 38

Book Description
SiC-based ceramic matrix composites (CMCs) [5-8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

Early Implementation of SiC Cladding Fuel Performance Models in BISON.

Early Implementation of SiC Cladding Fuel Performance Models in BISON. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 38

Book Description
SiC-based ceramic matrix composites (CMCs) [5-8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

Improvements to the Predictive Capability of FCM Fuel Performance Modeling

Improvements to the Predictive Capability of FCM Fuel Performance Modeling PDF Author: Daniel Philip Schappel
Publisher:
ISBN:
Category : Ceramic materials
Languages : en
Pages :

Book Description
A proposed fuel type for improved accident performance in LWRs (Light Water Reactors) involves TRISO (Tristructural-Isotropic) particles embedded in a NITE (Nano Infiltrated Eutectic) silicon carbide matrix. TRISO fuel particles contain a spherical fuel kernel of about 500 to in excess of 800 microns in diameter. The kernel and buffer layer are then coated with three isotropic layers consisting of a dense inner pyrolytic carbon (IPyC), a silicon carbide (SiC) layer, and an outer pyrolytic carbon (OPyC) layer. These layers are about 40 microns thick. The TRISO particle packing fraction in the NITE-SiC matrix is expected to be about 40 vol percent. The release of radioactivity into the coolant is dependent on the integrity of the silicon carbide layer of the TRISO particles and the NITE-SiC matrix. Currently BISON is a code being used to simulate the thermomechanical behavior of this fuel type. BISON, a code under development by Idaho National Laboratory, is built on the Multi-physics Object Oriented Simulation Environment (MOOSE). MOOSE is a massively parallel, finite element computational system that uses a Jacobian-free, Newton-Krylov (JFNK) method to solve coupled systems and non-linear partial differential equations. Due to the anisotropic geometry of the FCM pellet, the capability to model a large and random arrangement of discrete TRISO particles was developed. Additional work has been performed to develop models for the fracture of the FCM materials and transport of silver and cesium. This combination allows sufficient predictive capability to perform preliminary analysis of FCM fuel performance. TRISO FCM is predicted to perform well for linear powers less than 45 kW per meter in light water reactor environments and 15 kW per meter in high temperature gas reactors. The silicon carbide pellet is expected to limit the cesium inventory release to less than one percent in the first two days following a major accident. Future work would focus on the coupling of PyC volume change and irradiation creep effects. Coupling these effects may prevent the large stresses predicted due to rapid volume expansion. An additional objective is to design and perform experiments that show the PyC behavior at high neutron fluence.

BISON Contact Improvements CASL FY14 Report

BISON Contact Improvements CASL FY14 Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description
The BISON code is the foundation for multiple fuel performance modeling efforts, and is currently under heavy development. For a variety of fuel forms, the effects of heat conduction across a gap and mechanical contact between components of a fuel system are very significant. It is thus critical that BISON have robust capabilities for enforcement of thermal and mechanical contact. BISON's solver robustness has generally been quite good before mechanical contact between the fuel and cladding occurs, but there have been significant challenges obtaining converged solutions once that contact occurs and the solver begins to enforce mechanical contact constraints. During the current year, significant development effort has been focused on the enforcement of mechanical contact to provide improved solution robustness. In addition to this work to improve mechanical contact robustness, an investigation into questionable results attributable to thermal contact has been performed. This investigation found that the order of integration typically used on the surfaces involved in thermal contact was not sufficiently high. To address this problem, a new option was provided to permit the use of a different integration order for surfaces, and new usage recommendations were provided.

Evaluation of Multilayer Silicon Carbide Composite Cladding Under Loss of Coolant Accident Conditions

Evaluation of Multilayer Silicon Carbide Composite Cladding Under Loss of Coolant Accident Conditions PDF Author: Gregory Welch Daines
Publisher:
ISBN:
Category :
Languages : en
Pages : 164

Book Description
Silicon carbide (SiC) has been proposed as an alternative to zirconium alloys used in current light water reactor (LWR) fuel cladding because it exhibits superior corrosion characteristics, high-temperature strength, and a 1000°C higher melting temperature, all of which are important during a loss of coolant accident (LOCA). To improve the performance of SiC cladding, a multilayered architecture consisting of layers of monolithic SiC (mSiC) and SiC/SiC ceramic matrix composite (CMC) has been proposed. In this work, the mechanical performance of both the tubing and the endplug joint of two-layer SiC cladding is investigated under conditions associated with the LOCA. Specifically, SiC cladding mechanical performance is investigated after exposure to 1,400°C steam and after quenching from 1,200°C into either 100°C or 90°C atmospheric-pressure water. The samples consist of two-layer SiC, with an inner SiC/SiC CMC layer and an outer monolith SiC layer. The relationship between mechanical performance and sample architecture is investigated through ceramography and internal void characterization. The two-layered SiC cladding design offered an as-received failure hoop stress of about 600 MPa, with little strength reduction due to thermal shock, and the tube failure hoop stress remained above 200 MPa after 48 hour high-temperature steam oxidation. The cladding showed pseudo-ductile behavior and failed in a non-frangible manner. The designs investigated for joint strength offered as-received burst strength above 30 MPa, although the impact of thermal shock and oxidation showed possible dependence on architecture. Overall, the cladding showed promising accident-tolerant performance. Because the implementation of SiC is complicated by the need for an open gap and low plenum pressure, thorium-based mixed oxides (MOX) are a promising fuel for SiC cladding because they have higher thermal conductivity and lower fission gas release (FGR). Previous efforts at MIT have modified the FRAPCON code to include thorium MOX fuel. In this work, the fission gas release and thermal conductivity models of FRAPCON-3.4-MIT are validated against published data. The results of this validation indicate a need to update the FGR model, which was accomplished in this work.

Continuum Damage Mechanics

Continuum Damage Mechanics PDF Author: Sumio Murakami
Publisher: Springer Science & Business Media
ISBN: 9400726651
Category : Technology & Engineering
Languages : en
Pages : 420

Book Description
Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.

Pellet-clad Interaction in Water Reactor Fuels

Pellet-clad Interaction in Water Reactor Fuels PDF Author:
Publisher: OECD Publishing
ISBN:
Category : Business & Economics
Languages : en
Pages : 562

Book Description
This publication sets out the findings of an international seminar, held in Aix-en-Provence, France in March 2004, which considered recent progress in the field of pellet-clad interaction in light water reactor fuels. It also reviews current understanding of relevant phenomena and their impact on the nuclear fuel rod under the widest possible conditions, and about both uranium-oxide and mixed-oxide fuels.

Materials and Processes

Materials and Processes PDF Author: Barrie D. Dunn
Publisher: Springer
ISBN: 3319233629
Category : Technology & Engineering
Languages : en
Pages : 677

Book Description
The objective of this book is to assist scientists and engineers select the ideal material or manufacturing process for particular applications; these could cover a wide range of fields, from light-weight structures to electronic hardware. The book will help in problem solving as it also presents more than 100 case studies and failure investigations from the space sector that can, by analogy, be applied to other industries. Difficult-to-find material data is included for reference. The sciences of metallic (primarily) and organic materials presented throughout the book demonstrate how they can be applied as an integral part of spacecraft product assurance schemes, which involve quality, material and processes evaluations, and the selection of mechanical and component parts. In this successor edition, which has been revised and updated, engineering problems associated with critical spacecraft hardware and the space environment are highlighted by over 500 illustrations including micrographs and fractographs. Space hardware captured by astronauts and returned to Earth from long durations in space are examined. Information detailed in the Handbook is applicable to general terrestrial applications including consumer electronics as well as high reliability systems associated with aeronautics, medical equipment and ground transportation. This Handbook is also directed to those involved in maximizing the relia bility of new materials and processes for space technology and space engineering. It will be invaluable to engineers concerned with the construction of advanced structures or mechanical and electronic sub-systems.

Scientific Issues in Fuel Behaviour

Scientific Issues in Fuel Behaviour PDF Author: NEA Nuclear Science Committee. Task Force on Scientific Issues Related to Fuel Behaviour
Publisher: OECD
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 96

Book Description
Dated January 1995

Fuel Modelling in Accident Conditions

Fuel Modelling in Accident Conditions PDF Author: International Atomic Energy Agency
Publisher:
ISBN: 9789201639196
Category : Technology & Engineering
Languages : en
Pages : 180

Book Description
This publication summarizes the findings and conclusions of an IAEA coordinated research project (CRP) on fuel modelling in accident conditions, which was initiated under the IAEA Action Plan on Nuclear Safety following the Fukushima accident. The overall aim of the project was to analyse and better understand fuel behavior in accident conditions, with a focus on loss of coolant accidents. In the course of the project the participants used a mixture of data derived from accident simulation experiments, in particular data designed to investigate the fuel behaviour during design basis accident and design extension conditions. They carried out calculations on priority cases selected from a matrix of cases identified at the first research coordination meeting and designed to support their individual priorities. These priority cases were chosen as the best available to help determine which of the many models used in the codes best reflect reality. The CRP provided an ideal platform to compare their code results with others and especially with experimental data, to which they otherwise would not have had access. The achievements made within this CRP fostered new collaborations and enhanced the development and improvement of common models and highlighted differences in the interpretation of some experiments and therefore in the use of the codes ? the so-called user effects.

Preventing Occupational Disease and Injury

Preventing Occupational Disease and Injury PDF Author: Barry S. Levy
Publisher: American Public Health Association
ISBN: 9780875530437
Category : Medical
Languages : en
Pages : 628

Book Description