Dynamics and Robust Control of Robot-Environment Interaction PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Dynamics and Robust Control of Robot-Environment Interaction PDF full book. Access full book title Dynamics and Robust Control of Robot-Environment Interaction by Miomir Vukobratovic. Download full books in PDF and EPUB format.

Dynamics and Robust Control of Robot-Environment Interaction

Dynamics and Robust Control of Robot-Environment Interaction PDF Author: Miomir Vukobratovic
Publisher: World Scientific
ISBN: 9812834761
Category : Technology & Engineering
Languages : en
Pages : 657

Book Description
This book covers the most attractive problem in robot control, dealing with the direct interaction between a robot and a dynamic environment, including the human-robot physical interaction. It provides comprehensive theoretical and experimental coverage of interaction control problems, starting from the mathematical modeling of robots interacting with complex dynamic environments, and proceeding to various concepts for interaction control design and implementation algorithms at different control layers. Focusing on the learning principle, it also shows the application of new and advanced learning algorithms for robotic contact tasks.

Dynamics and Robust Control of Robot-Environment Interaction

Dynamics and Robust Control of Robot-Environment Interaction PDF Author: Miomir Vukobratovic
Publisher: World Scientific
ISBN: 9812834761
Category : Technology & Engineering
Languages : en
Pages : 657

Book Description
This book covers the most attractive problem in robot control, dealing with the direct interaction between a robot and a dynamic environment, including the human-robot physical interaction. It provides comprehensive theoretical and experimental coverage of interaction control problems, starting from the mathematical modeling of robots interacting with complex dynamic environments, and proceeding to various concepts for interaction control design and implementation algorithms at different control layers. Focusing on the learning principle, it also shows the application of new and advanced learning algorithms for robotic contact tasks.

Human-Robot Interaction Control Using Reinforcement Learning

Human-Robot Interaction Control Using Reinforcement Learning PDF Author: Wen Yu
Publisher: John Wiley & Sons
ISBN: 1119782767
Category : Technology & Engineering
Languages : en
Pages : 288

Book Description
A comprehensive exploration of the control schemes of human-robot interactions In Human-Robot Interaction Control Using Reinforcement Learning, an expert team of authors delivers a concise overview of human-robot interaction control schemes and insightful presentations of novel, model-free and reinforcement learning controllers. The book begins with a brief introduction to state-of-the-art human-robot interaction control and reinforcement learning before moving on to describe the typical environment model. The authors also describe some of the most famous identification techniques for parameter estimation. Human-Robot Interaction Control Using Reinforcement Learning offers rigorous mathematical treatments and demonstrations that facilitate the understanding of control schemes and algorithms. It also describes stability and convergence analysis of human-robot interaction control and reinforcement learning based control. The authors also discuss advanced and cutting-edge topics, like inverse and velocity kinematics solutions, H2 neural control, and likely upcoming developments in the field of robotics. Readers will also enjoy: A thorough introduction to model-based human-robot interaction control Comprehensive explorations of model-free human-robot interaction control and human-in-the-loop control using Euler angles Practical discussions of reinforcement learning for robot position and force control, as well as continuous time reinforcement learning for robot force control In-depth examinations of robot control in worst-case uncertainty using reinforcement learning and the control of redundant robots using multi-agent reinforcement learning Perfect for senior undergraduate and graduate students, academic researchers, and industrial practitioners studying and working in the fields of robotics, learning control systems, neural networks, and computational intelligence, Human-Robot Interaction Control Using Reinforcement Learning is also an indispensable resource for students and professionals studying reinforcement learning.

Learning for Adaptive and Reactive Robot Control

Learning for Adaptive and Reactive Robot Control PDF Author: Aude Billard
Publisher: MIT Press
ISBN: 0262367017
Category : Technology & Engineering
Languages : en
Pages : 425

Book Description
Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.

Robot Dynamics and Control

Robot Dynamics and Control PDF Author: Mark W. Spong
Publisher: Wiley
ISBN: 9780471612438
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

Advances in Human-Robot Interaction

Advances in Human-Robot Interaction PDF Author: Erwin Prassler
Publisher: Springer Science & Business Media
ISBN: 9783540232117
Category : Technology & Engineering
Languages : en
Pages : 434

Book Description
"Advances in Human-Robot Interaction" provides a unique collection of recent research in human-robot interaction. It covers the basic important research areas ranging from multi-modal interfaces, interpretation, interaction, learning, or motion coordination to topics such as physical interaction, systems, and architectures. The book addresses key issues of human-robot interaction concerned with perception, modelling, control, planning and cognition, covering a wide spectrum of applications. This includes interaction and communication with robots in manufacturing environments and the collaboration and co-existence with assistive robots in domestic environments. Among the presented examples are a robotic bartender, a new programming paradigm for a cleaning robot, or an approach to interactive teaching of a robot assistant in manufacturing environment. This carefully edited book reports on contributions from leading German academic institutions and industrial companies brought together within MORPHA, a 4 year project on interaction and communication between humans and anthropomorphic robot assistants.

Robot Force Control

Robot Force Control PDF Author: Bruno Siciliano
Publisher: Springer Science & Business Media
ISBN: 1461544319
Category : Technology & Engineering
Languages : en
Pages : 154

Book Description
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.

Robust Robotic Manipulation for Effective Multi-contact and Safe Physical Interactions

Robust Robotic Manipulation for Effective Multi-contact and Safe Physical Interactions PDF Author: Mikael Daniel Gabriel Jorda
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Robots are complex systems, at the intersection of numerous engineering domains. The goal of many researchers is to build a fully capable and safe robot that can work and assist humans in their daily lives. To reach these goals, the complex robotic systems must be separated in different subsystem components such as perception, world understanding, navigation, manipulation, interfaces and interaction. These subsystems need to be safe and robust in order to synergistically work together. In particular, a reliable and general robot manipulation framework for free space and contact tasks is required for robots to become useful in new environments. In this thesis, we aim at developing a theoretical and practical foundation for safe and robust robotic manipulation, involving multiple simultaneous physical interactions with complex and unknown environments. We start with the well known operational space control framework: a task-oriented control methodology that enables task dynamic decoupling and hierarchical control structures. After reviewing the operational space control theory for controlling a robot task and posture, we present a series of practical considerations for its robust implementation on real hardware platforms. The integration in this framework of constraints such as joint limits and obstacles is then discussed, and a method to react safely to unexpected contacts on the robot structure during operations is proposed. These constraints are handled as control objectives in the control hierarchy, using artificial potential fields to generate repulsive forces and dynamically consistent projections to ensure an independent control of the constraints and task objectives. This systematic treatment of constraints at the control level enables a robust, autonomous execution of complex tasks in changing environments. This framework was extended over the years to consider underactuated robots in arbitrary contact situations. This resulted in a comprehensive formulation to the problem of controlling a high-dimensional robotic system involving complex tasks subject to various constraints, obstacles, balance and multiple contacts. Contacts are essential for robot manipulation. On the one hand, parts of the robot tasks involve physical interactions that need to be controlled precisely. On the other hand, further contacts are required on underactuated systems in order to enable the robot motion and guarantee its balance. In addition, contacts between the robot and the environment are subject to geometric and friction constraints that need to be addressed by the control framework. Therefore, in this thesis, the operational space whole-body control framework is completed to enable a systematic treatment of multi-contact scenarios. A virtual linkage model separates the contact forces into three sets. The resultant forces allow the robot to compensate for its underactuation. The task contact forces are controlled to their desired values. The internal forces provide a way to satisfy geometric and friction constraints. A method using barrier functions is proposed to specify a set of internal forces that ensure the robot's balance and contact stability. Even when the desired contact forces are correctly specified, their control remains a challenge. Indeed, the fast and discontinuous closed loop dynamics of stiff physical interactions leads to instabilities in robot force control. Therefore, we adapt a time domain passivity approach to guarantee the stability of explicit force controllers. This results in an increased robustness and safety for robotic systems in multiple contact scenarios. To develop effective interfaces for human-robot collaboration, we also study haptic robot teleoperation. Haptic devices provide an intuitive interface to remotely control robots and combine the high-level cognitive autonomy of humans with the autonomous manipulation capabilities of robots. The goal of haptic robot control is to maximize the transparency between the human operator and the robot environment. It means that the robot environment should be felt by the human as if they were directly interacting with it, and the human commands should be executed precisely by the robot. Transparency is very challenging to achieve when communication delays are present in the system, which occurs systematically when there is a significant physical distance between the controlled robot and its human operator. To address this challenge, we propose a new paradigm for performing haptic-robot control. Instead of relying on a global feedback loop, the new method establishes two autonomous controllers acting on the robot and the haptic device, interfaced via a dual-proxy model. The dual-proxy is a bridge between the local controllers. It generates appropriate motion and force inputs that are consistent with the task physical interactions. The model relies on the exchange of position, contact, and environment geometry information, avoiding the limitations caused by a direct force feedback between robot and haptic device in conventional teleoperation. To estimate the environment contact geometry in real-time, we also design a new perception algorithm that enables a fully autonomous implementation of the dual-proxy model. The performance of all the control methods presented in this thesis are evaluated via simulations and hardware experimental validation. Combining these methods together results in a robust, safe and generic manipulation control framework for complex robots in interaction with uncertain environments. Such framework is one of the key components for a complete and fully capable robotic system.

Robotics and Automation Handbook

Robotics and Automation Handbook PDF Author: Thomas R. Kurfess
Publisher: CRC Press
ISBN: 1420039733
Category : Technology & Engineering
Languages : en
Pages : 608

Book Description
As the capability and utility of robots has increased dramatically with new technology, robotic systems can perform tasks that are physically dangerous for humans, repetitive in nature, or require increased accuracy, precision, and sterile conditions to radically minimize human error. The Robotics and Automation Handbook addresses the major aspects of designing, fabricating, and enabling robotic systems and their various applications. It presents kinetic and dynamic methods for analyzing robotic systems, considering factors such as force and torque. From these analyses, the book develops several controls approaches, including servo actuation, hybrid control, and trajectory planning. Design aspects include determining specifications for a robot, determining its configuration, and utilizing sensors and actuators. The featured applications focus on how the specific difficulties are overcome in the development of the robotic system. With the ability to increase human safety and precision in applications ranging from handling hazardous materials and exploring extreme environments to manufacturing and medicine, the uses for robots are growing steadily. The Robotics and Automation Handbook provides a solid foundation for engineers and scientists interested in designing, fabricating, or utilizing robotic systems.

Mobile Robot: Motion Control and Path Planning

Mobile Robot: Motion Control and Path Planning PDF Author: Ahmad Taher Azar
Publisher: Springer Nature
ISBN: 3031265645
Category : Technology & Engineering
Languages : en
Pages : 670

Book Description
This book presents the recent research advances in linear and nonlinear control techniques. From both a theoretical and practical standpoint, motion planning and related control challenges are key parts of robotics. Indeed, the literature on the planning of geometric paths and the generation of time-based trajectories, while accounting for the compatibility of such paths and trajectories with the kinematic and dynamic constraints of a manipulator or a mobile vehicle, is extensive and rich in historical references. Path planning is vital and critical for many different types of robotics, including autonomous vehicles, multiple robots, and robot arms. In the case of multiple robot route planning, it is critical to produce a safe path that avoids colliding with objects or other robots. When designing a safe path for an aerial or underwater robot, the 3D environment must be considered. As the number of degrees of freedom on a robot arm increases, so does the difficulty of path planning. As a result, safe pathways for high-dimensional systems must be developed in a timely manner. Nonetheless, modern robotic applications, particularly those requiring one or more robots to operate in a dynamic environment (e.g., human–robot collaboration and physical interaction, surveillance, or exploration of unknown spaces with mobile agents, etc.), pose new and exciting challenges to researchers and practitioners. For instance, planning a robot's motion in a dynamic environment necessitates the real-time and online execution of difficult computational operations. The development of efficient solutions for such real-time computations, which could be offered by specially designed computational architectures, optimized algorithms, and other unique contributions, is thus a critical step in the advancement of present and future-oriented robotics.

Robust Control and Adaptive Robust Control of Robot Manipulators

Robust Control and Adaptive Robust Control of Robot Manipulators PDF Author: Gangbing Song
Publisher:
ISBN:
Category :
Languages : en
Pages : 302

Book Description