Author: Gerhard Dangelmayr
Publisher: World Scientific
ISBN: 9812389466
Category : Science
Languages : en
Pages : 406
Book Description
Contains a collection of expository papers and advanced research articles which provide an overview the state of the art. Topics include new approaches to the mathematical characterization of spatiotemporal complexity as well as analysis of patterns in a variety of applied fields.
Dynamics And Bifurcation Of Patterns In Dissipative Systems
Author: Iuliana Oprea
Publisher: World Scientific
ISBN: 9814482099
Category : Science
Languages : en
Pages : 405
Book Description
Understanding the spontaneous formation and dynamics of spatiotemporal patterns in dissipative nonequilibrium systems is one of the major challenges in nonlinear science. This collection of expository papers and advanced research articles, written by leading experts, provides an overview of the state of the art. The topics include new approaches to the mathematical characterization of spatiotemporal complexity, with special emphasis on the role of symmetry, as well as analysis and experiments of patterns in a remarkable variety of applied fields such as magnetoconvection, liquid crystals, granular media, Faraday waves, multiscale biological patterns, visual hallucinations, and biological pacemakers. The unitary presentations, guiding the reader from basic fundamental concepts to the most recent research results on each of the themes, make the book suitable for a wide audience.
Publisher: World Scientific
ISBN: 9814482099
Category : Science
Languages : en
Pages : 405
Book Description
Understanding the spontaneous formation and dynamics of spatiotemporal patterns in dissipative nonequilibrium systems is one of the major challenges in nonlinear science. This collection of expository papers and advanced research articles, written by leading experts, provides an overview of the state of the art. The topics include new approaches to the mathematical characterization of spatiotemporal complexity, with special emphasis on the role of symmetry, as well as analysis and experiments of patterns in a remarkable variety of applied fields such as magnetoconvection, liquid crystals, granular media, Faraday waves, multiscale biological patterns, visual hallucinations, and biological pacemakers. The unitary presentations, guiding the reader from basic fundamental concepts to the most recent research results on each of the themes, make the book suitable for a wide audience.
Pattern Formation and Dynamics in Nonequilibrium Systems
Author: Michael Cross
Publisher: Cambridge University Press
ISBN: 0521770505
Category : Mathematics
Languages : en
Pages : 547
Book Description
An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.
Publisher: Cambridge University Press
ISBN: 0521770505
Category : Mathematics
Languages : en
Pages : 547
Book Description
An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.
Dynamics of Nonlinear Waves in Dissipative Systems Reduction, Bifurcation and Stability
Author: G Dangelmayr
Publisher: CRC Press
ISBN: 9780582229297
Category : Mathematics
Languages : en
Pages : 292
Book Description
The mathematical description of complex spatiotemporal behaviour observed in dissipative continuous systems is a major challenge for modern research in applied mathematics. While the behaviour of low-dimensional systems, governed by the dynamics of a finite number of modes is well understood, systems with large or unbounded spatial domains show intrinsic infinite-dimensional behaviour --not a priori accessible to the methods of finite dimensionaldynamical systems. The purpose of the four contributions in this book is to present some recent and active lines of research in evolution equations posed in large or unbounded domains. One of the most prominent features of these systems is the propagation of various types of patterns in the form of waves, such as travelling and standing waves and pulses and fronts. Different approaches to studying these kinds of phenomena are discussed in the book. A major theme is the reduction of an original evolution equation in the form of a partial differential equation system to a simpler system of equations, either a system of ordinary differential equation or a canonical system of PDEs. The study of the reduced equations provides insight into the bifurcations from simple to more complicated solutions and their stabilities. .
Publisher: CRC Press
ISBN: 9780582229297
Category : Mathematics
Languages : en
Pages : 292
Book Description
The mathematical description of complex spatiotemporal behaviour observed in dissipative continuous systems is a major challenge for modern research in applied mathematics. While the behaviour of low-dimensional systems, governed by the dynamics of a finite number of modes is well understood, systems with large or unbounded spatial domains show intrinsic infinite-dimensional behaviour --not a priori accessible to the methods of finite dimensionaldynamical systems. The purpose of the four contributions in this book is to present some recent and active lines of research in evolution equations posed in large or unbounded domains. One of the most prominent features of these systems is the propagation of various types of patterns in the form of waves, such as travelling and standing waves and pulses and fronts. Different approaches to studying these kinds of phenomena are discussed in the book. A major theme is the reduction of an original evolution equation in the form of a partial differential equation system to a simpler system of equations, either a system of ordinary differential equation or a canonical system of PDEs. The study of the reduced equations provides insight into the bifurcations from simple to more complicated solutions and their stabilities. .
Waves, Bifurcations, and Pattern Formation in Dissipative Systems with Symmetry
Author: Adam Scott Landsberg
Publisher:
ISBN:
Category :
Languages : en
Pages : 538
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 538
Book Description
Thinking in Complexity
Author: Klaus Mainzer
Publisher: Springer Science & Business Media
ISBN: 3540722289
Category : Science
Languages : en
Pages : 491
Book Description
This new edition also treats smart materials and artificial life. A new chapter on information and computational dynamics takes up many recent discussions in the community.
Publisher: Springer Science & Business Media
ISBN: 3540722289
Category : Science
Languages : en
Pages : 491
Book Description
This new edition also treats smart materials and artificial life. A new chapter on information and computational dynamics takes up many recent discussions in the community.
Numerical Bifurcation Analysis for Reaction-Diffusion Equations
Author: Zhen Mei
Publisher: Springer Science & Business Media
ISBN: 3662041774
Category : Mathematics
Languages : en
Pages : 422
Book Description
This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Many examples and figures illustrate analysis of bifurcation scenario and implementation of numerical schemes. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.
Publisher: Springer Science & Business Media
ISBN: 3662041774
Category : Mathematics
Languages : en
Pages : 422
Book Description
This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Many examples and figures illustrate analysis of bifurcation scenario and implementation of numerical schemes. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.
Patterns and Interfaces in Dissipative Dynamics
Author: L.M. Pismen
Publisher: Springer Science & Business Media
ISBN: 3540304312
Category : Science
Languages : en
Pages : 383
Book Description
Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.
Publisher: Springer Science & Business Media
ISBN: 3540304312
Category : Science
Languages : en
Pages : 383
Book Description
Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.
The Dynamics of Modulated Wave Trains
Author: A. Doelman
Publisher: American Mathematical Soc.
ISBN: 0821842935
Category : Mathematics
Languages : en
Pages : 122
Book Description
The authors investigate the dynamics of weakly-modulated nonlinear wave trains. For reaction-diffusion systems and for the complex Ginzburg-Landau equation, they establish rigorously that slowly varying modulations of wave trains are well approximated by solutions to the Burgers equation over the natural time scale. In addition to the validity of the Burgers equation, they show that the viscous shock profiles in the Burgers equation for the wave number can be found as genuine modulated waves in the underlying reaction-diffusion system. In other words, they establish the existence and stability of waves that are time-periodic in appropriately moving coordinate frames which separate regions in physical space that are occupied by wave trains of different, but almost identical, wave number. The speed of these shocks is determined by the Rankine-Hugoniot condition where the flux is given by the nonlinear dispersion relation of the wave trains. The group velocities of the wave trains in a frame moving with the interface are directed toward the interface. Using pulse-interaction theory, the authors also consider similar shock profiles for wave trains with large wave number, that is, for an infinite sequence of widely separated pulses. The results presented here are applied to the FitzHugh-Nagumo equation and to hydrodynamic stability problems.
Publisher: American Mathematical Soc.
ISBN: 0821842935
Category : Mathematics
Languages : en
Pages : 122
Book Description
The authors investigate the dynamics of weakly-modulated nonlinear wave trains. For reaction-diffusion systems and for the complex Ginzburg-Landau equation, they establish rigorously that slowly varying modulations of wave trains are well approximated by solutions to the Burgers equation over the natural time scale. In addition to the validity of the Burgers equation, they show that the viscous shock profiles in the Burgers equation for the wave number can be found as genuine modulated waves in the underlying reaction-diffusion system. In other words, they establish the existence and stability of waves that are time-periodic in appropriately moving coordinate frames which separate regions in physical space that are occupied by wave trains of different, but almost identical, wave number. The speed of these shocks is determined by the Rankine-Hugoniot condition where the flux is given by the nonlinear dispersion relation of the wave trains. The group velocities of the wave trains in a frame moving with the interface are directed toward the interface. Using pulse-interaction theory, the authors also consider similar shock profiles for wave trains with large wave number, that is, for an infinite sequence of widely separated pulses. The results presented here are applied to the FitzHugh-Nagumo equation and to hydrodynamic stability problems.
Numerical Continuation and Bifurcation in Nonlinear PDEs
Author: Hannes Uecker
Publisher: SIAM
ISBN: 1611976618
Category : Mathematics
Languages : en
Pages : 380
Book Description
This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.
Publisher: SIAM
ISBN: 1611976618
Category : Mathematics
Languages : en
Pages : 380
Book Description
This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.
Pattern Formation In Complex Dissipative Systems: Fluid Patterns, Liquid Crystals, Chemical Reactions
Author: S Kai
Publisher: World Scientific
ISBN: 9814555339
Category :
Languages : en
Pages : 596
Book Description
In this volume, the problems of pattern formation in physics, chemistry and other related fields in complex and nonlinear dissipative systems are studied. Main subjects discussed are formation mechanisms, properties, statistics, characterization and dynamics of periodic and nonperiodic patterns in the electrohydrodynamics in liquid crystals, Rayleigh-Benard convection, crystallization, viscous fingering and Belouzov-Zhabotinsky chemical reaction. Recent developments in topological and defect-mediated chaos, chaos in systems with large degrees of freedom and turbulence-turbulence transitions are also discussed.
Publisher: World Scientific
ISBN: 9814555339
Category :
Languages : en
Pages : 596
Book Description
In this volume, the problems of pattern formation in physics, chemistry and other related fields in complex and nonlinear dissipative systems are studied. Main subjects discussed are formation mechanisms, properties, statistics, characterization and dynamics of periodic and nonperiodic patterns in the electrohydrodynamics in liquid crystals, Rayleigh-Benard convection, crystallization, viscous fingering and Belouzov-Zhabotinsky chemical reaction. Recent developments in topological and defect-mediated chaos, chaos in systems with large degrees of freedom and turbulence-turbulence transitions are also discussed.