Author: Kang Li
Publisher: Springer
ISBN: 9811063648
Category : Computers
Languages : en
Pages : 824
Book Description
The three-volume set CCIS 761, CCIS 762, and CCIS 763 constitutes the thoroughly refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2017, and of the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2017, held in Nanjing, China, in September 2017. The 208 revised full papers presented were carefully reviewed and selected from over 625 submissions. The papers of this volume are organized in topical sections on: Biomedical Signal Processing; Computational Methods in Organism Modeling; Medical Apparatus and Clinical Applications; Bionics Control Methods, Algorithms and Apparatus; Modeling and Simulation of Life Systems; Data Driven Analysis; Image and Video Processing; Advanced Fuzzy and Neural Network Theory and Algorithms; Advanced Evolutionary Methods and Applications; Advanced Machine Learning Methods and Applications; Intelligent Modeling, Monitoring, and Control of Complex Nonlinear Systems; Advanced Methods for Networked Systems; Control and Analysis of Transportation Systems; Advanced Sliding Mode Control and Applications; Advanced Analysis of New Materials and Devices; Computational Intelligence in Utilization of Clean and Renewable Energy Resources; Intelligent Methods for Energy Saving and Pollution Reduction; Intelligent Methods in Developing Electric Vehicles, Engines and Equipment; Intelligent Computing and Control in Power Systems; Modeling, Simulation and Control in Smart Grid and Microgrid; Optimization Methods; Computational Methods for Sustainable Environment.
Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration
Author: Kang Li
Publisher: Springer
ISBN: 9811063648
Category : Computers
Languages : en
Pages : 824
Book Description
The three-volume set CCIS 761, CCIS 762, and CCIS 763 constitutes the thoroughly refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2017, and of the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2017, held in Nanjing, China, in September 2017. The 208 revised full papers presented were carefully reviewed and selected from over 625 submissions. The papers of this volume are organized in topical sections on: Biomedical Signal Processing; Computational Methods in Organism Modeling; Medical Apparatus and Clinical Applications; Bionics Control Methods, Algorithms and Apparatus; Modeling and Simulation of Life Systems; Data Driven Analysis; Image and Video Processing; Advanced Fuzzy and Neural Network Theory and Algorithms; Advanced Evolutionary Methods and Applications; Advanced Machine Learning Methods and Applications; Intelligent Modeling, Monitoring, and Control of Complex Nonlinear Systems; Advanced Methods for Networked Systems; Control and Analysis of Transportation Systems; Advanced Sliding Mode Control and Applications; Advanced Analysis of New Materials and Devices; Computational Intelligence in Utilization of Clean and Renewable Energy Resources; Intelligent Methods for Energy Saving and Pollution Reduction; Intelligent Methods in Developing Electric Vehicles, Engines and Equipment; Intelligent Computing and Control in Power Systems; Modeling, Simulation and Control in Smart Grid and Microgrid; Optimization Methods; Computational Methods for Sustainable Environment.
Publisher: Springer
ISBN: 9811063648
Category : Computers
Languages : en
Pages : 824
Book Description
The three-volume set CCIS 761, CCIS 762, and CCIS 763 constitutes the thoroughly refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2017, and of the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2017, held in Nanjing, China, in September 2017. The 208 revised full papers presented were carefully reviewed and selected from over 625 submissions. The papers of this volume are organized in topical sections on: Biomedical Signal Processing; Computational Methods in Organism Modeling; Medical Apparatus and Clinical Applications; Bionics Control Methods, Algorithms and Apparatus; Modeling and Simulation of Life Systems; Data Driven Analysis; Image and Video Processing; Advanced Fuzzy and Neural Network Theory and Algorithms; Advanced Evolutionary Methods and Applications; Advanced Machine Learning Methods and Applications; Intelligent Modeling, Monitoring, and Control of Complex Nonlinear Systems; Advanced Methods for Networked Systems; Control and Analysis of Transportation Systems; Advanced Sliding Mode Control and Applications; Advanced Analysis of New Materials and Devices; Computational Intelligence in Utilization of Clean and Renewable Energy Resources; Intelligent Methods for Energy Saving and Pollution Reduction; Intelligent Methods in Developing Electric Vehicles, Engines and Equipment; Intelligent Computing and Control in Power Systems; Modeling, Simulation and Control in Smart Grid and Microgrid; Optimization Methods; Computational Methods for Sustainable Environment.
Recursive Methods in Economic Dynamics
Author: Nancy L. Stokey
Publisher: Harvard University Press
ISBN: 0674735188
Category : Business & Economics
Languages : en
Pages : 607
Book Description
This rigorous but brilliantly lucid book presents a self-contained treatment of modern economic dynamics. Stokey, Lucas, and Prescott develop the basic methods of recursive analysis and illustrate the many areas where they can usefully be applied.
Publisher: Harvard University Press
ISBN: 0674735188
Category : Business & Economics
Languages : en
Pages : 607
Book Description
This rigorous but brilliantly lucid book presents a self-contained treatment of modern economic dynamics. Stokey, Lucas, and Prescott develop the basic methods of recursive analysis and illustrate the many areas where they can usefully be applied.
Evaluating the Calibration of Multi-step-ahead Density Forecasts Using Raw Moments
Author: Malte Knüppel
Publisher:
ISBN: 9783865587732
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9783865587732
Category :
Languages : en
Pages : 0
Book Description
Control and Dynamic Systems V51: Robust Control System Techniques and Applications
Author: C.T. Leonides
Publisher: Elsevier
ISBN: 0323163068
Category : Technology & Engineering
Languages : en
Pages : 491
Book Description
Control and Dynamic Systems: Advances in Theory and Application, Volume 51: Robust Control System Techniques and Applications Part 2 of 2 discusses system robustness techniques. This volume presents a comprehensive treatment of robust system techniques in nonlinear, linear, and multilinear interval systems. It also covers techniques for dealing with system disturbances, system modeling approximations, and parameter uncertainties. This volume ends by reviewing robustness techniques for systems with structured state space uncertainty. This volume will be of great use as a reference source for mechanical and electrical engineers.
Publisher: Elsevier
ISBN: 0323163068
Category : Technology & Engineering
Languages : en
Pages : 491
Book Description
Control and Dynamic Systems: Advances in Theory and Application, Volume 51: Robust Control System Techniques and Applications Part 2 of 2 discusses system robustness techniques. This volume presents a comprehensive treatment of robust system techniques in nonlinear, linear, and multilinear interval systems. It also covers techniques for dealing with system disturbances, system modeling approximations, and parameter uncertainties. This volume ends by reviewing robustness techniques for systems with structured state space uncertainty. This volume will be of great use as a reference source for mechanical and electrical engineers.
Uncertainty in Artificial Intelligence
Author: David Heckerman
Publisher: Morgan Kaufmann
ISBN: 1483214516
Category : Computers
Languages : en
Pages : 554
Book Description
Uncertainty in Artificial Intelligence contains the proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence held at the Catholic University of America in Washington, DC, on July 9-11, 1993. The papers focus on methods of reasoning and decision making under uncertainty as applied to problems in artificial intelligence (AI) and cover topics ranging from knowledge acquisition and automated model construction to learning, planning, temporal reasoning, and machine vision. Comprised of 66 chapters, this book begins with a discussion on causality in Bayesian belief networks before turning to a decision theoretic account of conditional ought statements that rectifies glaring deficiencies in classical deontic logic and forms a sound basis for qualitative decision theory. Subsequent chapters explore trade-offs in constructing and evaluating temporal influence diagrams; normative engineering risk management systems; additive belief-network models; and sensitivity analysis for probability assessments in Bayesian networks. Automated model construction and learning as well as algorithms for inference and decision making are also considered. This monograph will be of interest to both students and practitioners in the fields of AI and computer science.
Publisher: Morgan Kaufmann
ISBN: 1483214516
Category : Computers
Languages : en
Pages : 554
Book Description
Uncertainty in Artificial Intelligence contains the proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence held at the Catholic University of America in Washington, DC, on July 9-11, 1993. The papers focus on methods of reasoning and decision making under uncertainty as applied to problems in artificial intelligence (AI) and cover topics ranging from knowledge acquisition and automated model construction to learning, planning, temporal reasoning, and machine vision. Comprised of 66 chapters, this book begins with a discussion on causality in Bayesian belief networks before turning to a decision theoretic account of conditional ought statements that rectifies glaring deficiencies in classical deontic logic and forms a sound basis for qualitative decision theory. Subsequent chapters explore trade-offs in constructing and evaluating temporal influence diagrams; normative engineering risk management systems; additive belief-network models; and sensitivity analysis for probability assessments in Bayesian networks. Automated model construction and learning as well as algorithms for inference and decision making are also considered. This monograph will be of interest to both students and practitioners in the fields of AI and computer science.
Computational Science - ICCS 2007
Author: Yong Shi
Publisher: Springer Science & Business Media
ISBN: 3540725830
Category : Computers
Languages : en
Pages : 1310
Book Description
Annotation The four-volume set LNCS 4487-4490 constitutes the refereed proceedings of the 7th International Conference on Computational Science, ICCS 2007, held in Beijing, China in May 2007. More than 2400 submissions were made to the main conference and its 35 topical workshops. The 80 revised full papers and 11 revised short papers of the main track were carefully reviewed and selected from 360 submissions and are presented together with 624 accepted workshop papers in four volumes. According to the ICCS 2007 theme "Advancing Science and Society through Computation" the papers cover a large volume of topics in computational science and related areas, from multiscale physics, to wireless networks, and from graph theory to tools for program development. The papers are arranged in topical sections on efficient data management, parallel monte carlo algorithms, simulation of multiphysics multiscale systems, dynamic data driven application systems, computer graphics and geometric modeling, computer algebra systems, computational chemistry, computational approaches and techniques in bioinformatics, computational finance and business intelligence, geocomputation, high-level parallel programming, networks theory and applications, collective intelligence for semantic and knowledge grid, collaborative and cooperative environments, tools for program development and analysis in CS, intelligent agents in computing systems, CS in software engineering, computational linguistics in HCI, internet computing in science and engineering, workflow systems in e-science, graph theoretic algorithms and applications in cs, teaching CS, high performance data mining, mining text, semi-structured, Web, or multimedia data, computational methods in energy economics, risk analysis, advances in computational geomechanics and geophysics, meta-synthesis and complex systems, scientific computing in electronics engineering, wireless and mobile systems, high performance networked media and services, evolution toward next generation internet, real time systems and adaptive applications, evolutionary algorithms and evolvable systems.
Publisher: Springer Science & Business Media
ISBN: 3540725830
Category : Computers
Languages : en
Pages : 1310
Book Description
Annotation The four-volume set LNCS 4487-4490 constitutes the refereed proceedings of the 7th International Conference on Computational Science, ICCS 2007, held in Beijing, China in May 2007. More than 2400 submissions were made to the main conference and its 35 topical workshops. The 80 revised full papers and 11 revised short papers of the main track were carefully reviewed and selected from 360 submissions and are presented together with 624 accepted workshop papers in four volumes. According to the ICCS 2007 theme "Advancing Science and Society through Computation" the papers cover a large volume of topics in computational science and related areas, from multiscale physics, to wireless networks, and from graph theory to tools for program development. The papers are arranged in topical sections on efficient data management, parallel monte carlo algorithms, simulation of multiphysics multiscale systems, dynamic data driven application systems, computer graphics and geometric modeling, computer algebra systems, computational chemistry, computational approaches and techniques in bioinformatics, computational finance and business intelligence, geocomputation, high-level parallel programming, networks theory and applications, collective intelligence for semantic and knowledge grid, collaborative and cooperative environments, tools for program development and analysis in CS, intelligent agents in computing systems, CS in software engineering, computational linguistics in HCI, internet computing in science and engineering, workflow systems in e-science, graph theoretic algorithms and applications in cs, teaching CS, high performance data mining, mining text, semi-structured, Web, or multimedia data, computational methods in energy economics, risk analysis, advances in computational geomechanics and geophysics, meta-synthesis and complex systems, scientific computing in electronics engineering, wireless and mobile systems, high performance networked media and services, evolution toward next generation internet, real time systems and adaptive applications, evolutionary algorithms and evolvable systems.
Fusion Methodologies in Crisis Management
Author: Galina Rogova
Publisher: Springer
ISBN: 3319225278
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The book emphasizes a contemporary view on the role of higher level fusion in designing crisis management systems, and provide the formal foundations, architecture and implementation strategies required for building dynamic current and future situational pictures, challenges of, and the state of the art computational approaches to designing such processes. This book integrates recent advances in decision theory with those in fusion methodology to define an end-to-end framework for decision support in crisis management. The text discusses modern fusion and decision support methods for dealing with heterogeneous and often unreliable, low fidelity, contradictory, and redundant data and information, as well as rare, unknown, unconventional or even unimaginable critical situations. Also the book examines the role of context in situation management, cognitive aspects of decision making and situation management, approaches to domain representation, visualization, as well as the role and exploitation of the social media. The editors include examples and case studies from the field of disaster management.
Publisher: Springer
ISBN: 3319225278
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The book emphasizes a contemporary view on the role of higher level fusion in designing crisis management systems, and provide the formal foundations, architecture and implementation strategies required for building dynamic current and future situational pictures, challenges of, and the state of the art computational approaches to designing such processes. This book integrates recent advances in decision theory with those in fusion methodology to define an end-to-end framework for decision support in crisis management. The text discusses modern fusion and decision support methods for dealing with heterogeneous and often unreliable, low fidelity, contradictory, and redundant data and information, as well as rare, unknown, unconventional or even unimaginable critical situations. Also the book examines the role of context in situation management, cognitive aspects of decision making and situation management, approaches to domain representation, visualization, as well as the role and exploitation of the social media. The editors include examples and case studies from the field of disaster management.
Approximate Dynamic Programming
Author: Warren B. Powell
Publisher: John Wiley & Sons
ISBN: 0470182954
Category : Mathematics
Languages : en
Pages : 487
Book Description
A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.
Publisher: John Wiley & Sons
ISBN: 0470182954
Category : Mathematics
Languages : en
Pages : 487
Book Description
A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.
Incomplete Information and Heterogeneous Beliefs in Continuous-time Finance
Author: Alexandre C. Ziegler
Publisher: Springer Science & Business Media
ISBN: 3540247556
Category : Business & Economics
Languages : en
Pages : 205
Book Description
After a brief review of the existing incomplete information literature, the effect of incomplete information on investors' exptected utility, risky asset prices, and interest rates is described. It is demonstrated that increasing the quality of investors' information need not increase their expected utility and the prices of risky assets. The impact of other factors is discussed in detail. It is also demonstrated that financial markets in general do not aggregate information efficiently, a fact that can explain the equity premium puzzle.
Publisher: Springer Science & Business Media
ISBN: 3540247556
Category : Business & Economics
Languages : en
Pages : 205
Book Description
After a brief review of the existing incomplete information literature, the effect of incomplete information on investors' exptected utility, risky asset prices, and interest rates is described. It is demonstrated that increasing the quality of investors' information need not increase their expected utility and the prices of risky assets. The impact of other factors is discussed in detail. It is also demonstrated that financial markets in general do not aggregate information efficiently, a fact that can explain the equity premium puzzle.