Author: Joshua Cook
Publisher: Apress
ISBN: 1484230124
Category : Computers
Languages : en
Pages : 266
Book Description
Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller. It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable. As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies—Python, Jupyter, Postgres—as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms. What You'll Learn Master interactive development using the Jupyter platform Run and build Docker containers from scratch and from publicly available open-source images Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type Deploy a multi-service data science application across a cloud-based system Who This Book Is For Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers
Docker for Data Science
Author: Joshua Cook
Publisher: Apress
ISBN: 1484230124
Category : Computers
Languages : en
Pages : 266
Book Description
Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller. It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable. As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies—Python, Jupyter, Postgres—as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms. What You'll Learn Master interactive development using the Jupyter platform Run and build Docker containers from scratch and from publicly available open-source images Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type Deploy a multi-service data science application across a cloud-based system Who This Book Is For Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers
Publisher: Apress
ISBN: 1484230124
Category : Computers
Languages : en
Pages : 266
Book Description
Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller. It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable. As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies—Python, Jupyter, Postgres—as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms. What You'll Learn Master interactive development using the Jupyter platform Run and build Docker containers from scratch and from publicly available open-source images Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type Deploy a multi-service data science application across a cloud-based system Who This Book Is For Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers
Data Science at the Command Line
Author: Jeroen Janssens
Publisher: "O'Reilly Media, Inc."
ISBN: 1491947802
Category : Computers
Languages : en
Pages : 207
Book Description
This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms
Publisher: "O'Reilly Media, Inc."
ISBN: 1491947802
Category : Computers
Languages : en
Pages : 207
Book Description
This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms
Learn Docker in a Month of Lunches
Author: Elton Stoneman
Publisher: Manning
ISBN: 1617297054
Category : Computers
Languages : en
Pages : 462
Book Description
Summary Go from zero to production readiness with Docker in 22 bite-sized lessons! Learn Docker in a Month of Lunches is an accessible task-focused guide to Docker on Linux, Windows, or Mac systems. In it, you’ll learn practical Docker skills to help you tackle the challenges of modern IT, from cloud migration and microservices to handling legacy systems. There’s no excessive theory or niche-use cases—just a quick-and-easy guide to the essentials of Docker you’ll use every day. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology The idea behind Docker is simple: package applications in lightweight virtual containers that can be easily installed. The results of this simple idea are huge! Docker makes it possible to manage applications without creating custom infrastructures. Free, open source, and battle-tested, Docker has quickly become must-know technology for developers and administrators. About the book Learn Docker in a Month of Lunches introduces Docker concepts through a series of brief hands-on lessons. Following a learning path perfected by author Elton Stoneman, you’ll run containers by chapter 2 and package applications by chapter 3. Each lesson teaches a practical skill you can practice on Windows, macOS, and Linux systems. By the end of the month you’ll know how to containerize and run any kind of application with Docker. What's inside Package applications to run in containers Put containers into production Build optimized Docker images Run containerized apps at scale About the reader For IT professionals. No previous Docker experience required. About the author Elton Stoneman is a consultant, a former architect at Docker, a Microsoft MVP, and a Pluralsight author. Table of Contents PART 1 - UNDERSTANDING DOCKER CONTAINERS AND IMAGES 1. Before you begin 2. Understanding Docker and running Hello World 3. Building your own Docker images 4. Packaging applications from source code into Docker Images 5. Sharing images with Docker Hub and other registries 6. Using Docker volumes for persistent storage PART 2 - RUNNING DISTRIBUTED APPLICATIONS IN CONTAINERS 7. Running multi-container apps with Docker Compose 8. Supporting reliability with health checks and dependency checks 9. Adding observability with containerized monitoring 10. Running multiple environments with Docker Compose 11. Building and testing applications with Docker and Docker Compose PART 3 - RUNNING AT SCALE WITH A CONTAINER ORCHESTRATOR 12. Understanding orchestration: Docker Swarm and Kubernetes 13. Deploying distributed applications as stacks in Docker Swarm 14. Automating releases with upgrades and rollbacks 15. Configuring Docker for secure remote access and CI/CD 16. Building Docker images that run anywhere: Linux, Windows, Intel, and Arm PART 4 - GETTING YOUR CONTAINERS READY FOR PRODUCTION 17. Optimizing your Docker images for size, speed, and security 18. Application configuration management in containers 19. Writing and managing application logs with Docker 20. Controlling HTTP traffic to containers with a reverse proxy 21. Asynchronous communication with a message queue 22. Never the end
Publisher: Manning
ISBN: 1617297054
Category : Computers
Languages : en
Pages : 462
Book Description
Summary Go from zero to production readiness with Docker in 22 bite-sized lessons! Learn Docker in a Month of Lunches is an accessible task-focused guide to Docker on Linux, Windows, or Mac systems. In it, you’ll learn practical Docker skills to help you tackle the challenges of modern IT, from cloud migration and microservices to handling legacy systems. There’s no excessive theory or niche-use cases—just a quick-and-easy guide to the essentials of Docker you’ll use every day. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology The idea behind Docker is simple: package applications in lightweight virtual containers that can be easily installed. The results of this simple idea are huge! Docker makes it possible to manage applications without creating custom infrastructures. Free, open source, and battle-tested, Docker has quickly become must-know technology for developers and administrators. About the book Learn Docker in a Month of Lunches introduces Docker concepts through a series of brief hands-on lessons. Following a learning path perfected by author Elton Stoneman, you’ll run containers by chapter 2 and package applications by chapter 3. Each lesson teaches a practical skill you can practice on Windows, macOS, and Linux systems. By the end of the month you’ll know how to containerize and run any kind of application with Docker. What's inside Package applications to run in containers Put containers into production Build optimized Docker images Run containerized apps at scale About the reader For IT professionals. No previous Docker experience required. About the author Elton Stoneman is a consultant, a former architect at Docker, a Microsoft MVP, and a Pluralsight author. Table of Contents PART 1 - UNDERSTANDING DOCKER CONTAINERS AND IMAGES 1. Before you begin 2. Understanding Docker and running Hello World 3. Building your own Docker images 4. Packaging applications from source code into Docker Images 5. Sharing images with Docker Hub and other registries 6. Using Docker volumes for persistent storage PART 2 - RUNNING DISTRIBUTED APPLICATIONS IN CONTAINERS 7. Running multi-container apps with Docker Compose 8. Supporting reliability with health checks and dependency checks 9. Adding observability with containerized monitoring 10. Running multiple environments with Docker Compose 11. Building and testing applications with Docker and Docker Compose PART 3 - RUNNING AT SCALE WITH A CONTAINER ORCHESTRATOR 12. Understanding orchestration: Docker Swarm and Kubernetes 13. Deploying distributed applications as stacks in Docker Swarm 14. Automating releases with upgrades and rollbacks 15. Configuring Docker for secure remote access and CI/CD 16. Building Docker images that run anywhere: Linux, Windows, Intel, and Arm PART 4 - GETTING YOUR CONTAINERS READY FOR PRODUCTION 17. Optimizing your Docker images for size, speed, and security 18. Application configuration management in containers 19. Writing and managing application logs with Docker 20. Controlling HTTP traffic to containers with a reverse proxy 21. Asynchronous communication with a message queue 22. Never the end
Data Science in Production
Author: Ben Weber
Publisher:
ISBN: 9781652064633
Category :
Languages : en
Pages : 234
Book Description
Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub.
Publisher:
ISBN: 9781652064633
Category :
Languages : en
Pages : 234
Book Description
Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub.
Data Science at the Command Line
Author: Jeroen Janssens
Publisher: "O'Reilly Media, Inc."
ISBN: 1492087866
Category : Computers
Languages : en
Pages : 270
Book Description
This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, and model your data. To get you started, author Jeroen Janssens provides a Docker image packed with over 100 Unix power tools--useful whether you work with Windows, macOS, or Linux. You'll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you're comfortable processing data with Python or R, you'll learn how to greatly improve your data science workflow by leveraging the command line's power. This book is ideal for data scientists, analysts, engineers, system administrators, and researchers. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on text, CSV, HTML, XML, and JSON files Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow Create your own tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines Model data with dimensionality reduction, regression, and classification algorithms Leverage the command line from Python, Jupyter, R, RStudio, and Apache Spark
Publisher: "O'Reilly Media, Inc."
ISBN: 1492087866
Category : Computers
Languages : en
Pages : 270
Book Description
This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, and model your data. To get you started, author Jeroen Janssens provides a Docker image packed with over 100 Unix power tools--useful whether you work with Windows, macOS, or Linux. You'll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you're comfortable processing data with Python or R, you'll learn how to greatly improve your data science workflow by leveraging the command line's power. This book is ideal for data scientists, analysts, engineers, system administrators, and researchers. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on text, CSV, HTML, XML, and JSON files Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow Create your own tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines Model data with dimensionality reduction, regression, and classification algorithms Leverage the command line from Python, Jupyter, R, RStudio, and Apache Spark
Effective Data Science Infrastructure
Author: Ville Tuulos
Publisher: Simon and Schuster
ISBN: 1638350981
Category : Computers
Languages : en
Pages : 350
Book Description
Simplify data science infrastructure to give data scientists an efficient path from prototype to production. In Effective Data Science Infrastructure you will learn how to: Design data science infrastructure that boosts productivity Handle compute and orchestration in the cloud Deploy machine learning to production Monitor and manage performance and results Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, Conda, and Docker Architect complex applications for multiple teams and large datasets Customize and grow data science infrastructure Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you’ll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You’ll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python. The author is donating proceeds from this book to charities that support women and underrepresented groups in data science. About the technology Growing data science projects from prototype to production requires reliable infrastructure. Using the powerful new techniques and tooling in this book, you can stand up an infrastructure stack that will scale with any organization, from startups to the largest enterprises. About the book Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company’s specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems. What's inside Handle compute and orchestration in the cloud Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, AWS, and the Python data ecosystem Architect complex applications that require large datasets and models, and a team of data scientists About the reader For infrastructure engineers and engineering-minded data scientists who are familiar with Python. About the author At Netflix, Ville Tuulos designed and built Metaflow, a full-stack framework for data science. Currently, he is the CEO of a startup focusing on data science infrastructure. Table of Contents 1 Introducing data science infrastructure 2 The toolchain of data science 3 Introducing Metaflow 4 Scaling with the compute layer 5 Practicing scalability and performance 6 Going to production 7 Processing data 8 Using and operating models 9 Machine learning with the full stack
Publisher: Simon and Schuster
ISBN: 1638350981
Category : Computers
Languages : en
Pages : 350
Book Description
Simplify data science infrastructure to give data scientists an efficient path from prototype to production. In Effective Data Science Infrastructure you will learn how to: Design data science infrastructure that boosts productivity Handle compute and orchestration in the cloud Deploy machine learning to production Monitor and manage performance and results Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, Conda, and Docker Architect complex applications for multiple teams and large datasets Customize and grow data science infrastructure Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you’ll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You’ll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python. The author is donating proceeds from this book to charities that support women and underrepresented groups in data science. About the technology Growing data science projects from prototype to production requires reliable infrastructure. Using the powerful new techniques and tooling in this book, you can stand up an infrastructure stack that will scale with any organization, from startups to the largest enterprises. About the book Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company’s specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems. What's inside Handle compute and orchestration in the cloud Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, AWS, and the Python data ecosystem Architect complex applications that require large datasets and models, and a team of data scientists About the reader For infrastructure engineers and engineering-minded data scientists who are familiar with Python. About the author At Netflix, Ville Tuulos designed and built Metaflow, a full-stack framework for data science. Currently, he is the CEO of a startup focusing on data science infrastructure. Table of Contents 1 Introducing data science infrastructure 2 The toolchain of data science 3 Introducing Metaflow 4 Scaling with the compute layer 5 Practicing scalability and performance 6 Going to production 7 Processing data 8 Using and operating models 9 Machine learning with the full stack
Approaching (Almost) Any Machine Learning Problem
Author: Abhishek Thakur
Publisher: Abhishek Thakur
ISBN: 8269211508
Category : Computers
Languages : en
Pages : 300
Book Description
This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub
Publisher: Abhishek Thakur
ISBN: 8269211508
Category : Computers
Languages : en
Pages : 300
Book Description
This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub
Data Science and Digital Business
Author: Fausto Pedro García Márquez
Publisher: Springer
ISBN: 3319956515
Category : Business & Economics
Languages : en
Pages : 319
Book Description
This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.
Publisher: Springer
ISBN: 3319956515
Category : Business & Economics
Languages : en
Pages : 319
Book Description
This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.
A Curious Moon
Author: Rob Conery
Publisher:
ISBN:
Category :
Languages : en
Pages : 386
Book Description
Starting an application is simple enough, whether you use migrations, a model-synchronizer or good old-fashioned hand-rolled SQL. A year from now, however, when your app has grown and you're trying to measure what's happened... the story can quickly change when data is overwhelming you and you need to make sense of what's been accumulating. Learning how PostgreSQL works is just one aspect of working with data. PostgreSQL is there to enable, enhance and extend what you do as a developer/DBA. And just like any tool in your toolbox, it can help you create crap, slice off some fingers, or help you be the superstar that you are.That's the perspective of A Curious Moon - data is the truth, data is your friend, data is your business. The tools you use (namely PostgreSQL) are simply there to safeguard your treasure and help you understand what it's telling you.But what does it mean to be "data-minded"? How do you even get started? These are good questions and ones I struggled with when outlining this book. I quickly realized that the only way you could truly understand the power and necessity of solid databsae design was to live the life of a new DBA... thrown into the fire like we all were at some point...Meet Dee Yan, our fictional intern at Red:4 Aerospace. She's just been handed the keys to a massive set of data, straight from Saturn, and she has to load it up, evaluate it and then analyze it for a critical project. She knows that PostgreSQL exists... but that's about it.Much more than a tutorial, this book has a narrative element to it a bit like The Martian, where you get to know Dee and the problems she faces as a new developer/DBA... and how she solves them.The truth is in the data...
Publisher:
ISBN:
Category :
Languages : en
Pages : 386
Book Description
Starting an application is simple enough, whether you use migrations, a model-synchronizer or good old-fashioned hand-rolled SQL. A year from now, however, when your app has grown and you're trying to measure what's happened... the story can quickly change when data is overwhelming you and you need to make sense of what's been accumulating. Learning how PostgreSQL works is just one aspect of working with data. PostgreSQL is there to enable, enhance and extend what you do as a developer/DBA. And just like any tool in your toolbox, it can help you create crap, slice off some fingers, or help you be the superstar that you are.That's the perspective of A Curious Moon - data is the truth, data is your friend, data is your business. The tools you use (namely PostgreSQL) are simply there to safeguard your treasure and help you understand what it's telling you.But what does it mean to be "data-minded"? How do you even get started? These are good questions and ones I struggled with when outlining this book. I quickly realized that the only way you could truly understand the power and necessity of solid databsae design was to live the life of a new DBA... thrown into the fire like we all were at some point...Meet Dee Yan, our fictional intern at Red:4 Aerospace. She's just been handed the keys to a massive set of data, straight from Saturn, and she has to load it up, evaluate it and then analyze it for a critical project. She knows that PostgreSQL exists... but that's about it.Much more than a tutorial, this book has a narrative element to it a bit like The Martian, where you get to know Dee and the problems she faces as a new developer/DBA... and how she solves them.The truth is in the data...
Build a Career in Data Science
Author: Emily Robinson
Publisher: Manning
ISBN: 1617296244
Category : Computers
Languages : en
Pages : 352
Book Description
Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
Publisher: Manning
ISBN: 1617296244
Category : Computers
Languages : en
Pages : 352
Book Description
Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder