Discovering Modern Set Theory. I: The Basics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Discovering Modern Set Theory. I: The Basics PDF full book. Access full book title Discovering Modern Set Theory. I: The Basics by Winfried Just. Download full books in PDF and EPUB format.

Discovering Modern Set Theory. I: The Basics

Discovering Modern Set Theory. I: The Basics PDF Author: Winfried Just
Publisher: American Mathematical Soc.
ISBN: 0821802666
Category : Mathematics
Languages : en
Pages : 230

Book Description
This book bridges the gap between the many elementary introductions to set theory that are available today and the more advanced, specialized monographs. The authors have taken great care to motivate concepts as they are introduced. The large number of exercises included make this book especially suitable for self-study. Students are guided towards their own discoveries in a lighthearted, yet rigorous manner.

Discovering Modern Set Theory. I: The Basics

Discovering Modern Set Theory. I: The Basics PDF Author: Winfried Just
Publisher: American Mathematical Soc.
ISBN: 0821802666
Category : Mathematics
Languages : en
Pages : 230

Book Description
This book bridges the gap between the many elementary introductions to set theory that are available today and the more advanced, specialized monographs. The authors have taken great care to motivate concepts as they are introduced. The large number of exercises included make this book especially suitable for self-study. Students are guided towards their own discoveries in a lighthearted, yet rigorous manner.

Introduction to Modern Set Theory

Introduction to Modern Set Theory PDF Author: Judith Roitman
Publisher: John Wiley & Sons
ISBN: 9780471635192
Category : Mathematics
Languages : en
Pages : 188

Book Description
This is modern set theory from the ground up--from partial orderings and well-ordered sets to models, infinite cobinatorics and large cardinals. The approach is unique, providing rigorous treatment of basic set-theoretic methods, while integrating advanced material such as independence results, throughout. The presentation incorporates much interesting historical material and no background in mathematical logic is assumed. Treatment is self-contained, featuring theorem proofs supported by diagrams, examples and exercises. Includes applications of set theory to other branches of mathematics.

Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician

Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician PDF Author: Winfried Just and Martin Weese
Publisher: American Mathematical Soc.
ISBN: 9780821872086
Category : Set theory
Languages : en
Pages : 244

Book Description


Set Theory for the Working Mathematician

Set Theory for the Working Mathematician PDF Author: Krzysztof Ciesielski
Publisher: Cambridge University Press
ISBN: 9780521594653
Category : Mathematics
Languages : en
Pages : 256

Book Description
Presents those methods of modern set theory most applicable to other areas of pure mathematics.

Set Theory

Set Theory PDF Author: Ralf Schindler
Publisher: Springer
ISBN: 3319067257
Category : Mathematics
Languages : en
Pages : 335

Book Description
This textbook gives an introduction to axiomatic set theory and examines the prominent questions that are relevant in current research in a manner that is accessible to students. Its main theme is the interplay of large cardinals, inner models, forcing and descriptive set theory. The following topics are covered: • Forcing and constructability • The Solovay-Shelah Theorem i.e. the equiconsistency of ‘every set of reals is Lebesgue measurable’ with one inaccessible cardinal • Fine structure theory and a modern approach to sharps • Jensen’s Covering Lemma • The equivalence of analytic determinacy with sharps • The theory of extenders and iteration trees • A proof of projective determinacy from Woodin cardinals. Set Theory requires only a basic knowledge of mathematical logic and will be suitable for advanced students and researchers.

Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician

Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician PDF Author: Winfried Just
Publisher: American Mathematical Soc.
ISBN: 0821805282
Category : Mathematics
Languages : en
Pages : 240

Book Description
This is the second volume of a two-volume graduate text in set theory. The first volume covered the basics of modern set theory and was addressed primarily to beginning graduate students. The second volume is intended as a bridge between introductory set theory courses such as the first volume and advanced monographs that cover selected branches of set theory. The authors give short but rigorous introductions to set-theoretic concepts and techniques such as trees, partition calculus, cardinal invariants of the continuum, Martin's Axiom, closed unbounded and stationary sets, the Diamond Principle, and the use of elementary submodels. Great care is taken to motivate concepts and theorems presented.

Set Theory and the Continuum Hypothesis

Set Theory and the Continuum Hypothesis PDF Author: Paul J. Cohen
Publisher: Courier Corporation
ISBN: 0486469212
Category : Mathematics
Languages : en
Pages : 196

Book Description
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.

A Book of Set Theory

A Book of Set Theory PDF Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259

Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--

Combinatorial Set Theory

Combinatorial Set Theory PDF Author: Lorenz J. Halbeisen
Publisher: Springer
ISBN: 3319602314
Category : Mathematics
Languages : en
Pages : 586

Book Description
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.

Descriptive Set Theory

Descriptive Set Theory PDF Author: Yiannis N. Moschovakis
Publisher: American Mathematical Society
ISBN: 1470479877
Category : Mathematics
Languages : en
Pages : 518

Book Description
Descriptive Set Theory is the study of sets in separable, complete metric spaces that can be defined (or constructed), and so can be expected to have special properties not enjoyed by arbitrary pointsets. This subject was started by the French analysts at the turn of the 20th century, most prominently Lebesgue, and, initially, was concerned primarily with establishing regularity properties of Borel and Lebesgue measurable functions, and analytic, coanalytic, and projective sets. Its rapid development came to a halt in the late 1930s, primarily because it bumped against problems which were independent of classical axiomatic set theory. The field became very active again in the 1960s, with the introduction of strong set-theoretic hypotheses and methods from logic (especially recursion theory), which revolutionized it. This monograph develops Descriptive Set Theory systematically, from its classical roots to the modern ?effective? theory and the consequences of strong (especially determinacy) hypotheses. The book emphasizes the foundations of the subject, and it sets the stage for the dramatic results (established since the 1980s) relating large cardinals and determinacy or allowing applications of Descriptive Set Theory to classical mathematics. The book includes all the necessary background from (advanced) set theory, logic and recursion theory.