Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 716
Book Description
数理科学講究錄
International Aerospace Abstracts
Symposium on Turbulent Shear Flows
Turbulence Modeling for CFD: CD-ROM
Author: David C. Wilcox
Publisher:
ISBN: 9781928729082
Category : Fluid dynamics
Languages : en
Pages : 522
Book Description
Publisher:
ISBN: 9781928729082
Category : Fluid dynamics
Languages : en
Pages : 522
Book Description
Mathematics of Large Eddy Simulation of Turbulent Flows
Author: Luigi Carlo Berselli
Publisher: Springer Science & Business Media
ISBN: 9783540263166
Category : Computers
Languages : en
Pages : 378
Book Description
The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field
Publisher: Springer Science & Business Media
ISBN: 9783540263166
Category : Computers
Languages : en
Pages : 378
Book Description
The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field
Physics Briefs
A Selection of Test Cases for the Validation of Large-eddy Simulations of Turbulent Flows
Author:
Publisher:
ISBN: 9789283610724
Category : Computational fluid dynamics
Languages : en
Pages : 198
Book Description
Publisher:
ISBN: 9789283610724
Category : Computational fluid dynamics
Languages : en
Pages : 198
Book Description
Large-Eddy Simulations of Turbulence
Author: M. Lesieur
Publisher: Cambridge University Press
ISBN: 9780521781244
Category : Mathematics
Languages : en
Pages : 240
Book Description
Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.
Publisher: Cambridge University Press
ISBN: 9780521781244
Category : Mathematics
Languages : en
Pages : 240
Book Description
Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.
Statistical Theory and Modeling for Turbulent Flows
Author: P. A. Durbin
Publisher: Wiley-Blackwell
ISBN:
Category : Mathematics
Languages : en
Pages : 312
Book Description
Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, and this work offers a grounding in the subject of turbulence, developing both the physical insight and the mathematical framework needed to express the theory. Providing a solid foundation in the key topics in turbulence, this valuable reference resource enables the reader to become a knowledgeable developer of predictive tools. This central and broad ranging topic would be of interest to graduate students in a broad range of subjects, including aeronautical and mechanical engineering, applied mathematics and the physical sciences. The accompanying solutions manual to the text also makes this a valuable teaching tool for lecturers and for practising engineers and scientists in computational and experimental and experimental fluid dynamics.
Publisher: Wiley-Blackwell
ISBN:
Category : Mathematics
Languages : en
Pages : 312
Book Description
Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, and this work offers a grounding in the subject of turbulence, developing both the physical insight and the mathematical framework needed to express the theory. Providing a solid foundation in the key topics in turbulence, this valuable reference resource enables the reader to become a knowledgeable developer of predictive tools. This central and broad ranging topic would be of interest to graduate students in a broad range of subjects, including aeronautical and mechanical engineering, applied mathematics and the physical sciences. The accompanying solutions manual to the text also makes this a valuable teaching tool for lecturers and for practising engineers and scientists in computational and experimental and experimental fluid dynamics.
Theories of Turbulence
Author: Martin Oberlack
Publisher: Springer
ISBN: 3709125642
Category : Science
Languages : en
Pages : 377
Book Description
The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.
Publisher: Springer
ISBN: 3709125642
Category : Science
Languages : en
Pages : 377
Book Description
The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.