Analysis For Diffusion Processes On Riemannian Manifolds PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Analysis For Diffusion Processes On Riemannian Manifolds PDF full book. Access full book title Analysis For Diffusion Processes On Riemannian Manifolds by Feng-yu Wang. Download full books in PDF and EPUB format.

Analysis For Diffusion Processes On Riemannian Manifolds

Analysis For Diffusion Processes On Riemannian Manifolds PDF Author: Feng-yu Wang
Publisher: World Scientific
ISBN: 9814452661
Category : Mathematics
Languages : en
Pages : 392

Book Description
Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.

Analysis For Diffusion Processes On Riemannian Manifolds

Analysis For Diffusion Processes On Riemannian Manifolds PDF Author: Feng-yu Wang
Publisher: World Scientific
ISBN: 9814452661
Category : Mathematics
Languages : en
Pages : 392

Book Description
Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.

Functional Analytic Techniques for Diffusion Processes

Functional Analytic Techniques for Diffusion Processes PDF Author: Kazuaki Taira
Publisher: Springer Nature
ISBN: 9811910995
Category : Mathematics
Languages : en
Pages : 792

Book Description
This book is an easy-to-read reference providing a link between functional analysis and diffusion processes. More precisely, the book takes readers to a mathematical crossroads of functional analysis (macroscopic approach), partial differential equations (mesoscopic approach), and probability (microscopic approach) via the mathematics needed for the hard parts of diffusion processes. This work brings these three fields of analysis together and provides a profound stochastic insight (microscopic approach) into the study of elliptic boundary value problems. The author does a massive study of diffusion processes from a broad perspective and explains mathematical matters in a more easily readable way than one usually would find. The book is amply illustrated; 14 tables and 141 figures are provided with appropriate captions in such a fashion that readers can easily understand powerful techniques of functional analysis for the study of diffusion processes in probability. The scope of the author’s work has been and continues to be powerful methods of functional analysis for future research of elliptic boundary value problems and Markov processes via semigroups. A broad spectrum of readers can appreciate easily and effectively the stochastic intuition that this book conveys. Furthermore, the book will serve as a sound basis both for researchers and for graduate students in pure and applied mathematics who are interested in a modern version of the classical potential theory and Markov processes. For advanced undergraduates working in functional analysis, partial differential equations, and probability, it provides an effective opening to these three interrelated fields of analysis. Beginning graduate students and mathematicians in the field looking for a coherent overview will find the book to be a helpful beginning. This work will be a major influence in a very broad field of study for a long time.

An Introduction to Stochastic Differential Equations with Reflection

An Introduction to Stochastic Differential Equations with Reflection PDF Author: Andrey Pilipenko
Publisher: Universitätsverlag Potsdam
ISBN: 3869562978
Category :
Languages : en
Pages : 90

Book Description


Stochastic Differential Equations and Diffusion Processes

Stochastic Differential Equations and Diffusion Processes PDF Author: N. Ikeda
Publisher: Elsevier
ISBN: 1483296156
Category : Mathematics
Languages : en
Pages : 572

Book Description
Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sections discussing complex (conformal) martingales and Kahler diffusions have been added.

Ergodic Control of Diffusion Processes

Ergodic Control of Diffusion Processes PDF Author: Ari Arapostathis
Publisher: Cambridge University Press
ISBN: 1107079284
Category : Mathematics
Languages : en
Pages : 341

Book Description
This comprehensive volume on ergodic control for diffusions highlights intuition alongside technical arguments. A concise account of Markov process theory is followed by a complete development of the fundamental issues and formalisms in control of diffusions. This then leads to a comprehensive treatment of ergodic control, a problem that straddles stochastic control and the ergodic theory of Markov processes. The interplay between the probabilistic and ergodic-theoretic aspects of the problem, notably the asymptotics of empirical measures on one hand, and the analytic aspects leading to a characterization of optimality via the associated Hamilton–Jacobi–Bellman equation on the other, is clearly revealed. The more abstract controlled martingale problem is also presented, in addition to many other related issues and models. Assuming only graduate-level probability and analysis, the authors develop the theory in a manner that makes it accessible to users in applied mathematics, engineering, finance and operations research.

Generalized Diffusion Processes

Generalized Diffusion Processes PDF Author: Nikola_ Ivanovich Portenko
Publisher: American Mathematical Soc.
ISBN: 9780821898260
Category : Mathematics
Languages : en
Pages : 200

Book Description
Diffusion processes serve as a mathematical model for the physical phenomenon of diffusion. One of the most important problems in the theory of diffusion processes is the development of methods for constructing these processes from a given diffusion matrix and a given drift vector. Focusing on the investigation of this problem, this book is intended for specialists in the theory of random processes and its applications. A generalized diffusion process (that is, a continuous Markov process for which the Kolmogorov local characteristics exist in the generalized sense) can serve as a model for diffusion in a medium moving in a nonregular way. The author constructs generalized diffusion processes under two assumptions: first, that the diffusion matrix is sufficiently regular; and second, that the drift vector is a function integrable to some power, or is a generalized function of the type of the derivative of a measure.

Elements of Random Walk and Diffusion Processes

Elements of Random Walk and Diffusion Processes PDF Author: Oliver C. Ibe
Publisher: John Wiley & Sons
ISBN: 1118617932
Category : Mathematics
Languages : en
Pages : 280

Book Description
Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic processes, the book presents the connections between diffusion equations and random motion. Standard methods and applications of Brownian motion are addressed in addition to Levy motion, which has become popular in random searches in a variety of fields. The book also covers fractional calculus and introduces percolation theory and its relationship to diffusion processes. With a strong emphasis on the relationship between random walk theory and diffusion processes, Elements of Random Walk and Diffusion Processes features: Basic concepts in probability, an overview of stochastic and fractional processes, and elements of graph theory Numerous practical applications of random walk across various disciplines, including how to model stock prices and gambling, describe the statistical properties of genetic drift, and simplify the random movement of molecules in liquids and gases Examples of the real-world applicability of random walk such as node movement and node failure in wireless networking, the size of the Web in computer science, and polymers in physics Plentiful examples and exercises throughout that illustrate the solution of many practical problems Elements of Random Walk and Diffusion Processes is an ideal reference for researchers and professionals involved in operations research, economics, engineering, mathematics, and physics. The book is also an excellent textbook for upper-undergraduate and graduate level courses in probability and stochastic processes, stochastic models, random motion and Brownian theory, random walk theory, and diffusion process techniques.

Diffusion Processes

Diffusion Processes PDF Author: Merkel H. Jacobs
Publisher: Springer Science & Business Media
ISBN: 3642864147
Category : Science
Languages : en
Pages : 165

Book Description
A basic tenet of present day biophysics is that flows in biological systems are causally related to forces. A large and growing fraction of membrane biophysics is devoted to an exploration of the quantitative relationship between forces and flows in order to understand both the nature of biological membranes and the processes that take place on and in these membranes. This is why the discussion of the nature of diffusion is so important in any formal development of membrane bio physics. This was equally true twenty years ago when tracers were just beginning to be used for the measurement of m.

Stochastic Processes and Applications

Stochastic Processes and Applications PDF Author: Grigorios A. Pavliotis
Publisher: Springer
ISBN: 1493913239
Category : Mathematics
Languages : en
Pages : 345

Book Description
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

The Mathematics of Diffusion

The Mathematics of Diffusion PDF Author: John Crank
Publisher: Oxford University Press
ISBN: 9780198534112
Category : Mathematics
Languages : en
Pages : 428

Book Description
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.