Author: Reinhard B. Neder
Publisher: OUP Oxford
ISBN: 0191552801
Category : Science
Languages : en
Pages : 240
Book Description
In recent years it has become apparent that knowing the average atomic structure of materials is insufficient to understand their properties. Diffuse scattering in addition to the Bragg scattering holds the key to learning about defects in materials, the topic of many recent books. What has been missing is a detailed step-by-step guide how to simulate disordered materials. The DISCUS cook book fills this need covering simple topics such as building a computer crystal to complex topic such as domain structures, stacking faults or using advanced refinement techniques to adjust parameters on a disordered model. The book contains a CDROM with all files needed to recreate every example given using the program DISCUS. The reader is free to follow the principles behind simulating disordered materials or to get down into the details and run or modify the given examples.
Diffuse Scattering and Defect Structure Simulations
Author: Reinhard B. Neder
Publisher: OUP Oxford
ISBN: 0191552801
Category : Science
Languages : en
Pages : 240
Book Description
In recent years it has become apparent that knowing the average atomic structure of materials is insufficient to understand their properties. Diffuse scattering in addition to the Bragg scattering holds the key to learning about defects in materials, the topic of many recent books. What has been missing is a detailed step-by-step guide how to simulate disordered materials. The DISCUS cook book fills this need covering simple topics such as building a computer crystal to complex topic such as domain structures, stacking faults or using advanced refinement techniques to adjust parameters on a disordered model. The book contains a CDROM with all files needed to recreate every example given using the program DISCUS. The reader is free to follow the principles behind simulating disordered materials or to get down into the details and run or modify the given examples.
Publisher: OUP Oxford
ISBN: 0191552801
Category : Science
Languages : en
Pages : 240
Book Description
In recent years it has become apparent that knowing the average atomic structure of materials is insufficient to understand their properties. Diffuse scattering in addition to the Bragg scattering holds the key to learning about defects in materials, the topic of many recent books. What has been missing is a detailed step-by-step guide how to simulate disordered materials. The DISCUS cook book fills this need covering simple topics such as building a computer crystal to complex topic such as domain structures, stacking faults or using advanced refinement techniques to adjust parameters on a disordered model. The book contains a CDROM with all files needed to recreate every example given using the program DISCUS. The reader is free to follow the principles behind simulating disordered materials or to get down into the details and run or modify the given examples.
Diffuse Scattering and Defect Structure Simulations
Author: Reinhard B. Neder
Publisher: Oxford University Press
ISBN: 0199233691
Category : Computers
Languages : en
Pages : 239
Book Description
Understanding the atomic structure of complex and time disordered materials relies upon computer simulations of these structures. This cook book provides a unique mixture of simulation know-how and hands on examples. All related files and the program DISCUS are included on a CDROM with the book.
Publisher: Oxford University Press
ISBN: 0199233691
Category : Computers
Languages : en
Pages : 239
Book Description
Understanding the atomic structure of complex and time disordered materials relies upon computer simulations of these structures. This cook book provides a unique mixture of simulation know-how and hands on examples. All related files and the program DISCUS are included on a CDROM with the book.
Single Crystal Neutron Diffraction from Molecular Materials
Author: Chick C. Wilson
Publisher: World Scientific
ISBN: 9789810237769
Category : Science
Languages : en
Pages : 390
Book Description
This important book presents a comprehensive account of the techniques & applications of single crystal neutron diffraction in the area of chemical crystallography & molecular structure. Beginning with a brief description of the general principles & the reasons for choosing the technique - the "why" - the book covers the methods for both the production of neutrons & the measurement of their scattering by molecular crystals - the "how" - followed by a detailed survey of past, present & future applications - the "what". The coverage of both steady state & pulsed neutron sources & instrumentation is extensive, while the survey of applications is the most comprehensive yet undertaken. The book endeavours to show why the technique is an essential method for studying areas as diverse as hydrogen bonding & weak interactions, organometallics, supramolecular chemistry & crystal engineering, metal hydrides, charge density & pharmaceuticals. It is an ideal reference source for the research worker interested in using neutron diffraction to study the structure of molecules. Contents: Crystallography & the Importance of Structural Information; Neutron Scattering; Neutron Diffractometers; Review of Applications I: The Accurate Location of Atoms; Review of Applications II: Hydrogen Bonding & Other Intermolecular Interactions; Review of Applications III: Probing Vibrations & Disorder; Impact on Material Properties & Design; The Future: New Instruments, New Sources, New Techniques. Readership: Students & researchers involved in structural science, especially chemical crystallography.
Publisher: World Scientific
ISBN: 9789810237769
Category : Science
Languages : en
Pages : 390
Book Description
This important book presents a comprehensive account of the techniques & applications of single crystal neutron diffraction in the area of chemical crystallography & molecular structure. Beginning with a brief description of the general principles & the reasons for choosing the technique - the "why" - the book covers the methods for both the production of neutrons & the measurement of their scattering by molecular crystals - the "how" - followed by a detailed survey of past, present & future applications - the "what". The coverage of both steady state & pulsed neutron sources & instrumentation is extensive, while the survey of applications is the most comprehensive yet undertaken. The book endeavours to show why the technique is an essential method for studying areas as diverse as hydrogen bonding & weak interactions, organometallics, supramolecular chemistry & crystal engineering, metal hydrides, charge density & pharmaceuticals. It is an ideal reference source for the research worker interested in using neutron diffraction to study the structure of molecules. Contents: Crystallography & the Importance of Structural Information; Neutron Scattering; Neutron Diffractometers; Review of Applications I: The Accurate Location of Atoms; Review of Applications II: Hydrogen Bonding & Other Intermolecular Interactions; Review of Applications III: Probing Vibrations & Disorder; Impact on Material Properties & Design; The Future: New Instruments, New Sources, New Techniques. Readership: Students & researchers involved in structural science, especially chemical crystallography.
Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition
Author: Vitalij Pecharsky
Publisher: Springer Science & Business Media
ISBN: 0387095799
Category : Science
Languages : en
Pages : 751
Book Description
A little over ?ve years have passed since the ?rst edition of this book appeared in print. Seems like an instant but also eternity, especially considering numerous developments in the hardware and software that have made it from the laboratory test beds into the real world of powder diffraction. This prompted a revision, which had to be beyond cosmetic limits. The book was, and remains focused on standard laboratory powder diffractometry. It is still meant to be used as a text for teaching students about the capabilities and limitations of the powder diffraction method. We also hope that it goes beyond a simple text, and therefore, is useful as a reference to practitioners of the technique. The original book had seven long chapters that may have made its use as a text - convenient. So the second edition is broken down into 25 shorter chapters. The ?rst ?fteen are concerned with the fundamentals of powder diffraction, which makes it much more logical, considering a typical 16-week long semester. The last ten ch- ters are concerned with practical examples of structure solution and re?nement, which were preserved from the ?rst edition and expanded by another example – R solving the crystal structure of Tylenol .
Publisher: Springer Science & Business Media
ISBN: 0387095799
Category : Science
Languages : en
Pages : 751
Book Description
A little over ?ve years have passed since the ?rst edition of this book appeared in print. Seems like an instant but also eternity, especially considering numerous developments in the hardware and software that have made it from the laboratory test beds into the real world of powder diffraction. This prompted a revision, which had to be beyond cosmetic limits. The book was, and remains focused on standard laboratory powder diffractometry. It is still meant to be used as a text for teaching students about the capabilities and limitations of the powder diffraction method. We also hope that it goes beyond a simple text, and therefore, is useful as a reference to practitioners of the technique. The original book had seven long chapters that may have made its use as a text - convenient. So the second edition is broken down into 25 shorter chapters. The ?rst ?fteen are concerned with the fundamentals of powder diffraction, which makes it much more logical, considering a typical 16-week long semester. The last ten ch- ters are concerned with practical examples of structure solution and re?nement, which were preserved from the ?rst edition and expanded by another example – R solving the crystal structure of Tylenol .
Atomic Pair Distribution Function Analysis
Author: Simon Billinge
Publisher: Oxford University Press
ISBN: 0198885814
Category : Science
Languages : en
Pages : 275
Book Description
Since the early 1990s the atomic pair distribution function (PDF) analysis of powder diffraction data has undergone something of a revolution in its ability to do just that: yield important structural information beyond the average crystal structure of a material. With the advent of advanced sources, computing and algorithms, it is now useful for studying the structure of nanocrystals, clusters and molecules in solution or otherwise disordered in space, nanoporous materials and things intercalated into them, and to look for local distortions and defects in crystals. It can be used in a time-resolved way to study structural changes taking place during synthesis and in operating devices, and to map heterogeneous systems. Although the experiments are somewhat straightforward, there can be a gap in knowledge when trying to use PDF to extract structural information by modelling. This book addresses this gap and guides the reader through a series of real life worked examples that gradually increase in complexity so the reader can have the independence and confidence to apply PDF methods to their own research and answer their own scientific questions. The book is intended for graduate students and other research scientists who are new to PDF and want to use the methods but are unsure how to take the next steps to get started.
Publisher: Oxford University Press
ISBN: 0198885814
Category : Science
Languages : en
Pages : 275
Book Description
Since the early 1990s the atomic pair distribution function (PDF) analysis of powder diffraction data has undergone something of a revolution in its ability to do just that: yield important structural information beyond the average crystal structure of a material. With the advent of advanced sources, computing and algorithms, it is now useful for studying the structure of nanocrystals, clusters and molecules in solution or otherwise disordered in space, nanoporous materials and things intercalated into them, and to look for local distortions and defects in crystals. It can be used in a time-resolved way to study structural changes taking place during synthesis and in operating devices, and to map heterogeneous systems. Although the experiments are somewhat straightforward, there can be a gap in knowledge when trying to use PDF to extract structural information by modelling. This book addresses this gap and guides the reader through a series of real life worked examples that gradually increase in complexity so the reader can have the independence and confidence to apply PDF methods to their own research and answer their own scientific questions. The book is intended for graduate students and other research scientists who are new to PDF and want to use the methods but are unsure how to take the next steps to get started.
Diffuse X-Ray Scattering and Models of Disorder
Author: T. R. Welberry
Publisher: Oxford University Press
ISBN: 0198862482
Category : X-ray crystallography
Languages : en
Pages : 425
Book Description
"Diffuse X-ray scattering is a rich source of local structural information over and above that obtained by conventional crystal structure determination (crystallography). The main aim in the book is to show how computer simulation of a model crystal provides a general method by which diffuse scattering of all kinds and from all types of materials can be interpreted and analysed. Part I gives a description of the experimental methods used to obtain diffuse scattering data including recent improvements both in synchrotron and neutron facilities and latest detectors that are now available. Part II describes a number of stochastic models of disorder, which allows various concepts to be established and enables simple examples to be generated to illustrate key principles. Part III describes example studies of a wide variety of real materials. These examples not only document the development of computer simulation methods for investigating and analysing disorder problems but also provide a resource for helping future researchers recognise the kinds of effects which can occur and for pointing the way to tackling new problems which are encountered. Part IV describes more recent studies in which the increased computational power, coupled with improvements in the quality and quantity of data that is now obtainable, has allowed more quantitative and detailed analyses to be undertaken"--
Publisher: Oxford University Press
ISBN: 0198862482
Category : X-ray crystallography
Languages : en
Pages : 425
Book Description
"Diffuse X-ray scattering is a rich source of local structural information over and above that obtained by conventional crystal structure determination (crystallography). The main aim in the book is to show how computer simulation of a model crystal provides a general method by which diffuse scattering of all kinds and from all types of materials can be interpreted and analysed. Part I gives a description of the experimental methods used to obtain diffuse scattering data including recent improvements both in synchrotron and neutron facilities and latest detectors that are now available. Part II describes a number of stochastic models of disorder, which allows various concepts to be established and enables simple examples to be generated to illustrate key principles. Part III describes example studies of a wide variety of real materials. These examples not only document the development of computer simulation methods for investigating and analysing disorder problems but also provide a resource for helping future researchers recognise the kinds of effects which can occur and for pointing the way to tackling new problems which are encountered. Part IV describes more recent studies in which the increased computational power, coupled with improvements in the quality and quantity of data that is now obtainable, has allowed more quantitative and detailed analyses to be undertaken"--
In-situ Characterization of Heterogeneous Catalysts
Author: José A. Rodriguez
Publisher: John Wiley & Sons
ISBN: 1118355911
Category : Science
Languages : en
Pages : 488
Book Description
Helps researchers develop new catalysts for sustainable fueland chemical production Reviewing the latest developments in the field, this bookexplores the in-situ characterization of heterogeneous catalysts,enabling readers to take full advantage of the sophisticatedtechniques used to study heterogeneous catalysts and reactionmechanisms. In using these techniques, readers can learn to improvethe selectivity and the performance of catalysts and how to preparecatalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts featurescontributions from leading experts in the field of catalysis. Itbegins with an introduction to the fundamentals and thencovers: Characterization of electronic and structural properties ofcatalysts using X-ray absorption fine structure spectroscopy Techniques for structural characterization based on X-raydiffraction, neutron scattering, and pair distribution functionanalysis Microscopy and morphological studies Techniques for studying the interaction of adsorbates withcatalyst surfaces, including infrared spectroscopy, Ramanspectroscopy, EPR, and moderate pressure XPS Integration of techniques that provide information on thestructural properties of catalysts with techniques that facilitatethe study of surface reactions Throughout the book, detailed examples illustrate how techniquesfor studying catalysts and reaction mechanisms can be applied tosolve a broad range of problems in heterogeneous catalysis.Detailed figures help readers better understand how and why thetechniques discussed in the book work. At the end of each chapter,an extensive set of references leads to the primary literature inthe field. By explaining step by step modern techniques for the in-situcharacterization of heterogeneous catalysts, this book enableschemical scientists and engineers to better understand catalystbehavior and design new catalysts for green, sustainable fuel andchemical production.
Publisher: John Wiley & Sons
ISBN: 1118355911
Category : Science
Languages : en
Pages : 488
Book Description
Helps researchers develop new catalysts for sustainable fueland chemical production Reviewing the latest developments in the field, this bookexplores the in-situ characterization of heterogeneous catalysts,enabling readers to take full advantage of the sophisticatedtechniques used to study heterogeneous catalysts and reactionmechanisms. In using these techniques, readers can learn to improvethe selectivity and the performance of catalysts and how to preparecatalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts featurescontributions from leading experts in the field of catalysis. Itbegins with an introduction to the fundamentals and thencovers: Characterization of electronic and structural properties ofcatalysts using X-ray absorption fine structure spectroscopy Techniques for structural characterization based on X-raydiffraction, neutron scattering, and pair distribution functionanalysis Microscopy and morphological studies Techniques for studying the interaction of adsorbates withcatalyst surfaces, including infrared spectroscopy, Ramanspectroscopy, EPR, and moderate pressure XPS Integration of techniques that provide information on thestructural properties of catalysts with techniques that facilitatethe study of surface reactions Throughout the book, detailed examples illustrate how techniquesfor studying catalysts and reaction mechanisms can be applied tosolve a broad range of problems in heterogeneous catalysis.Detailed figures help readers better understand how and why thetechniques discussed in the book work. At the end of each chapter,an extensive set of references leads to the primary literature inthe field. By explaining step by step modern techniques for the in-situcharacterization of heterogeneous catalysts, this book enableschemical scientists and engineers to better understand catalystbehavior and design new catalysts for green, sustainable fuel andchemical production.
Powder Diffraction
Author: R E Dinnebier
Publisher: Royal Society of Chemistry
ISBN: 1782625992
Category : Science
Languages : en
Pages : 525
Book Description
Powder diffraction is a widely used scientific technique in the characterization of materials with broad application in materials science, chemistry, physics, geology, pharmacology and archaeology. Powder Diffraction: Theory and Practice provides an advanced introductory text about modern methods and applications of powder diffraction in research and industry. The authors begin with a brief overview of the basic theory of diffraction from crystals and powders. Data collection strategies are described including x-ray, neutron and electron diffraction setups using modern day apparatus including synchrotron sources. Data corrections, essential for quantitative analysis are covered before the authors conclude with a discussion of the analysis methods themselves. The information is presented in a way that facilitates understanding the information content of the data, as well as best practices for collecting and analyzing data for quantitative analysis. This long awaited book condenses the knowledge of renowned experts in the field into a single, authoritative, overview of the application of powder diffraction in modern materials research. The book contains essential theory and introductory material for students and researchers wishing to learn how to apply the frontier methods of powder diffraction
Publisher: Royal Society of Chemistry
ISBN: 1782625992
Category : Science
Languages : en
Pages : 525
Book Description
Powder diffraction is a widely used scientific technique in the characterization of materials with broad application in materials science, chemistry, physics, geology, pharmacology and archaeology. Powder Diffraction: Theory and Practice provides an advanced introductory text about modern methods and applications of powder diffraction in research and industry. The authors begin with a brief overview of the basic theory of diffraction from crystals and powders. Data collection strategies are described including x-ray, neutron and electron diffraction setups using modern day apparatus including synchrotron sources. Data corrections, essential for quantitative analysis are covered before the authors conclude with a discussion of the analysis methods themselves. The information is presented in a way that facilitates understanding the information content of the data, as well as best practices for collecting and analyzing data for quantitative analysis. This long awaited book condenses the knowledge of renowned experts in the field into a single, authoritative, overview of the application of powder diffraction in modern materials research. The book contains essential theory and introductory material for students and researchers wishing to learn how to apply the frontier methods of powder diffraction
Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules
Author: Dmitriĭ Ivanovich Svergun
Publisher:
ISBN: 0199639531
Category : Science
Languages : en
Pages : 369
Book Description
This book describes all aspects of the technique of small-angle scattering of X-rays and neutrons, including instrumentation, sample requirements, data interpretation and modelling methods, in a comprehensive way and gives examples of applications in various fields of biophysics and biochemistry.
Publisher:
ISBN: 0199639531
Category : Science
Languages : en
Pages : 369
Book Description
This book describes all aspects of the technique of small-angle scattering of X-rays and neutrons, including instrumentation, sample requirements, data interpretation and modelling methods, in a comprehensive way and gives examples of applications in various fields of biophysics and biochemistry.
Basic Concepts of X-Ray Diffraction
Author: Emil Zolotoyabko
Publisher: John Wiley & Sons
ISBN: 3527681183
Category : Science
Languages : en
Pages : 299
Book Description
Authored by a university professor deeply involved in X-ray diffraction-related research, this textbook is based on his lectures given to graduate students for more than 20 years. It adopts a well-balanced approach, describing basic concepts and experimental techniques, which make X-ray diffraction an unsurpassed method for studying the structure of materials. Both dynamical and kinematic X-ray diffraction is considered from a unified viewpoint, in which the dynamical diffraction in single-scattering approximation serves as a bridge between these two parts. The text emphasizes the fundamental laws that govern the interaction of X-rays with matter, but also covers in detail classical and modern applications, e.g., line broadening, texture and strain/stress analyses, X-ray mapping in reciprocal space, high-resolution X-ray diffraction in the spatial and wave vector domains, X-ray focusing, inelastic and time-resolved X-ray scattering. This unique scope, in combination with otherwise hard-to-find information on analytic expressions for simulating X-ray diffraction profiles in thin-film heterostructures, X-ray interaction with phonons, coherent scattering of Mossbauer radiation, and energy-variable X-ray diffraction, makes the book indispensable for any serious user of X-ray diffraction techniques. Compact and self-contained, this textbook is suitable for students taking X-ray diffraction courses towards specialization in materials science, physics, chemistry, or biology. Numerous clear-cut illustrations, an easy-to-read style of writing, as well as rather short, easily digestible chapters all facilitate comprehension.
Publisher: John Wiley & Sons
ISBN: 3527681183
Category : Science
Languages : en
Pages : 299
Book Description
Authored by a university professor deeply involved in X-ray diffraction-related research, this textbook is based on his lectures given to graduate students for more than 20 years. It adopts a well-balanced approach, describing basic concepts and experimental techniques, which make X-ray diffraction an unsurpassed method for studying the structure of materials. Both dynamical and kinematic X-ray diffraction is considered from a unified viewpoint, in which the dynamical diffraction in single-scattering approximation serves as a bridge between these two parts. The text emphasizes the fundamental laws that govern the interaction of X-rays with matter, but also covers in detail classical and modern applications, e.g., line broadening, texture and strain/stress analyses, X-ray mapping in reciprocal space, high-resolution X-ray diffraction in the spatial and wave vector domains, X-ray focusing, inelastic and time-resolved X-ray scattering. This unique scope, in combination with otherwise hard-to-find information on analytic expressions for simulating X-ray diffraction profiles in thin-film heterostructures, X-ray interaction with phonons, coherent scattering of Mossbauer radiation, and energy-variable X-ray diffraction, makes the book indispensable for any serious user of X-ray diffraction techniques. Compact and self-contained, this textbook is suitable for students taking X-ray diffraction courses towards specialization in materials science, physics, chemistry, or biology. Numerous clear-cut illustrations, an easy-to-read style of writing, as well as rather short, easily digestible chapters all facilitate comprehension.