Differential Geometry and Mathematical Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Differential Geometry and Mathematical Physics PDF full book. Access full book title Differential Geometry and Mathematical Physics by Gerd Rudolph. Download full books in PDF and EPUB format.

Differential Geometry and Mathematical Physics

Differential Geometry and Mathematical Physics PDF Author: Gerd Rudolph
Publisher: Springer Science & Business Media
ISBN: 9400753454
Category : Science
Languages : en
Pages : 766

Book Description
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

Differential Geometry and Mathematical Physics

Differential Geometry and Mathematical Physics PDF Author: Gerd Rudolph
Publisher: Springer Science & Business Media
ISBN: 9400753454
Category : Science
Languages : en
Pages : 766

Book Description
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

Differential Geometry for Physicists and Mathematicians

Differential Geometry for Physicists and Mathematicians PDF Author: José G. Vargas
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814566391
Category : Mathematics
Languages : en
Pages : 293

Book Description
I. Introduction. 1. Orientations -- II. Tools. 2. Differential forms -- 3. Vector spaces and tensor products -- 4. Exterior differentiation -- III. Two Klein geometries. 5. Affine Klein geometry -- 6. Euclidean Klein geometry -- IV. Cartan connections. 7. Generalized geometry made simple -- 8. Affine connections -- 9. Euclidean connections -- 10. Riemannian spaces and pseudo-spaces -- V. The future? 11. Extensions of Cartan -- 12. Understand the past to imagine the future -- 13. A book of farewells

Modern Differential Geometry for Physicists

Modern Differential Geometry for Physicists PDF Author: Chris J. Isham
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308

Book Description


Differential Geometry with Applications to Mechanics and Physics

Differential Geometry with Applications to Mechanics and Physics PDF Author: Yves Talpaert
Publisher: CRC Press
ISBN: 9780824703851
Category : Mathematics
Languages : en
Pages : 480

Book Description
An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.

Differential Geometry in Physics

Differential Geometry in Physics PDF Author: Gabriel Lugo
Publisher:
ISBN: 9781469669250
Category :
Languages : en
Pages : 372

Book Description
Differential Geometry in Physics is a treatment of the mathematical foundations of the theory of general relativity and gauge theory of quantum fields. The material is intended to help bridge the gap that often exists between theoretical physics and applied mathematics. The approach is to carve an optimal path to learning this challenging field by appealing to the much more accessible theory of curves and surfaces. The transition from classical differential geometry as developed by Gauss, Riemann and other giants, to the modern approach, is facilitated by a very intuitive approach that sacrifices some mathematical rigor for the sake of understanding the physics. The book features numerous examples of beautiful curves and surfaces often reflected in nature, plus more advanced computations of trajectory of particles in black holes. Also embedded in the later chapters is a detailed description of the famous Dirac monopole and instantons. Features of this book: * Chapters 1-4 and chapter 5 comprise the content of a one-semester course taught by the author for many years. * The material in the other chapters has served as the foundation for many master's thesis at University of North Carolina Wilmington for students seeking doctoral degrees. * An open access ebook edition is available at Open UNC (https: //openunc.org) * The book contains over 80 illustrations, including a large array of surfaces related to the theory of soliton waves that does not commonly appear in standard mathematical texts on differential geometry.

Topology and Geometry for Physicists

Topology and Geometry for Physicists PDF Author: Charles Nash
Publisher: Courier Corporation
ISBN: 0486318362
Category : Mathematics
Languages : en
Pages : 302

Book Description
Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.

Differential Geometry For Physicists

Differential Geometry For Physicists PDF Author: Bo-yu Hou
Publisher: World Scientific Publishing Company
ISBN: 9813105097
Category : Science
Languages : en
Pages : 561

Book Description
This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.

A Course in Modern Mathematical Physics

A Course in Modern Mathematical Physics PDF Author: Peter Szekeres
Publisher: Cambridge University Press
ISBN: 9780521829601
Category : Mathematics
Languages : en
Pages : 620

Book Description
This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.

Differential Geometry and Lie Groups for Physicists

Differential Geometry and Lie Groups for Physicists PDF Author: Marián Fecko
Publisher: Cambridge University Press
ISBN: 1139458035
Category : Science
Languages : en
Pages : 11

Book Description
Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.

Differential Geometry, Differential Equations, and Mathematical Physics

Differential Geometry, Differential Equations, and Mathematical Physics PDF Author: Maria Ulan
Publisher: Springer Nature
ISBN: 3030632539
Category : Mathematics
Languages : en
Pages : 231

Book Description
This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.