Differential Geometry, Differential Equations, and Mathematical Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Differential Geometry, Differential Equations, and Mathematical Physics PDF full book. Access full book title Differential Geometry, Differential Equations, and Mathematical Physics by Maria Ulan. Download full books in PDF and EPUB format.

Differential Geometry, Differential Equations, and Mathematical Physics

Differential Geometry, Differential Equations, and Mathematical Physics PDF Author: Maria Ulan
Publisher: Springer Nature
ISBN: 3030632539
Category : Mathematics
Languages : en
Pages : 231

Book Description
This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.

Differential Geometry, Differential Equations, and Mathematical Physics

Differential Geometry, Differential Equations, and Mathematical Physics PDF Author: Maria Ulan
Publisher: Springer Nature
ISBN: 3030632539
Category : Mathematics
Languages : en
Pages : 231

Book Description
This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.

Differential Geometry, Differential Equations, and Special Functions

Differential Geometry, Differential Equations, and Special Functions PDF Author: Galina Filipuk
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311077464X
Category : Computers
Languages : en
Pages : 274

Book Description
This book is devoted to applications: differential equations, elements of special functions and differential geometry of curves and surfaces with a specific focus on visualization in Mathematica®. Discusses how Mathematica® can be used as an aid in solving mathematical problems and discovering a solution. A complete tutorial provides the background needed for understanding the examples and how to compute in Mathematica®.

Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations PDF Author: Marius van der Put
Publisher: Springer Science & Business Media
ISBN: 3642557503
Category : Mathematics
Languages : en
Pages : 446

Book Description
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews

From Gauss to Painlevé

From Gauss to Painlevé PDF Author: Katsunori Iwasaki
Publisher: Springer Science & Business Media
ISBN: 3322901637
Category : Technology & Engineering
Languages : en
Pages : 355

Book Description
This book gives an introduction to the modern theory of special functions. It focuses on the nonlinear Painlevé differential equation and its solutions, the so-called Painlevé functions. It contains modern treatments of the Gauss hypergeometric differential equation, monodromy of second order Fuchsian equations and nonlinear differential equations near singular points.The book starts from an elementary level requiring only basic notions of differential equations, function theory and group theory. Graduate students should be able to work with the text."The authors do an excellent job of presenting both the historical and mathematical details of the subject in a form accessible to any mathematician or physicist." (MPR in "The American Mathematical Monthly" März 1992.

Existence Theorems for Ordinary Differential Equations

Existence Theorems for Ordinary Differential Equations PDF Author: Francis J. Murray
Publisher: Courier Corporation
ISBN: 0486154955
Category : Mathematics
Languages : en
Pages : 178

Book Description
This text examines fundamental and general existence theorems, along with uniqueness theorems and Picard iterants, and applies them to properties of solutions and linear differential equations. 1954 edition.

Vector Methods Applied to Differential Geometry, Mechanics, and Potential Theory

Vector Methods Applied to Differential Geometry, Mechanics, and Potential Theory PDF Author: D. E. Rutherford
Publisher: Courier Corporation
ISBN: 048615453X
Category : Mathematics
Languages : en
Pages : 148

Book Description
This text offers both a clear view of the abstract theory as well as a concise survey of the theory's applications to various branches of pure and applied mathematics. 1957 edition.

Partial Differential Equations 2

Partial Differential Equations 2 PDF Author: Friedrich Sauvigny
Publisher: Springer Science & Business Media
ISBN: 3540344624
Category : Mathematics
Languages : en
Pages : 401

Book Description
This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.

Fundamentals of Differential Geometry

Fundamentals of Differential Geometry PDF Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1461205417
Category : Mathematics
Languages : en
Pages : 553

Book Description
This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER

Modern Differential Geometry of Curves and Surfaces with Mathematica

Modern Differential Geometry of Curves and Surfaces with Mathematica PDF Author: Elsa Abbena
Publisher: CRC Press
ISBN: 1351992201
Category : Mathematics
Languages : en
Pages : 1024

Book Description
Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.

Introduction to Differential Geometry

Introduction to Differential Geometry PDF Author: Joel W. Robbin
Publisher: Springer Nature
ISBN: 3662643405
Category : Mathematics
Languages : en
Pages : 426

Book Description
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.