Author: Paul, Sudip
Publisher: IGI Global
ISBN: 1522585680
Category : Medical
Languages : en
Pages : 392
Book Description
While doctors and physicians are more than capable of detecting diseases of the brain, the most agile human mind cannot compete with the processing power of modern technology. Utilizing algorithmic systems in healthcare in this way may provide a way to treat neurological diseases before they happen. Early Detection of Neurological Disorders Using Machine Learning Systems provides innovative insights into implementing smart systems to detect neurological diseases at a faster rate than by normal means. The topics included in this book are artificial intelligence, data analysis, and biomedical informatics. It is designed for clinicians, doctors, neurologists, physiotherapists, neurorehabilitation specialists, scholars, academics, and students interested in topics centered on biomedical engineering, bio-electronics, medical electronics, physiology, neurosciences, life sciences, and physics.
Early Detection of Neurological Disorders Using Machine Learning Systems
Author: Paul, Sudip
Publisher: IGI Global
ISBN: 1522585680
Category : Medical
Languages : en
Pages : 392
Book Description
While doctors and physicians are more than capable of detecting diseases of the brain, the most agile human mind cannot compete with the processing power of modern technology. Utilizing algorithmic systems in healthcare in this way may provide a way to treat neurological diseases before they happen. Early Detection of Neurological Disorders Using Machine Learning Systems provides innovative insights into implementing smart systems to detect neurological diseases at a faster rate than by normal means. The topics included in this book are artificial intelligence, data analysis, and biomedical informatics. It is designed for clinicians, doctors, neurologists, physiotherapists, neurorehabilitation specialists, scholars, academics, and students interested in topics centered on biomedical engineering, bio-electronics, medical electronics, physiology, neurosciences, life sciences, and physics.
Publisher: IGI Global
ISBN: 1522585680
Category : Medical
Languages : en
Pages : 392
Book Description
While doctors and physicians are more than capable of detecting diseases of the brain, the most agile human mind cannot compete with the processing power of modern technology. Utilizing algorithmic systems in healthcare in this way may provide a way to treat neurological diseases before they happen. Early Detection of Neurological Disorders Using Machine Learning Systems provides innovative insights into implementing smart systems to detect neurological diseases at a faster rate than by normal means. The topics included in this book are artificial intelligence, data analysis, and biomedical informatics. It is designed for clinicians, doctors, neurologists, physiotherapists, neurorehabilitation specialists, scholars, academics, and students interested in topics centered on biomedical engineering, bio-electronics, medical electronics, physiology, neurosciences, life sciences, and physics.
Handbook of Decision Support Systems for Neurological Disorders
Author: D. Jude Hemanth
Publisher: Academic Press
ISBN: 0128222727
Category : Science
Languages : en
Pages : 322
Book Description
Handbook of Decision Support Systems for Neurological Disorders provides readers with complete coverage of advanced computer-aided diagnosis systems for neurological disorders. While computer-aided decision support systems for different medical imaging modalities are available, this is the first book to solely concentrate on decision support systems for neurological disorders. Due to the increase in the prevalence of diseases such as Alzheimer, Parkinson's and Dementia, this book will have significant importance in the medical field. Topics discussed include recent computational approaches, different types of neurological disorders, deep convolution neural networks, generative adversarial networks, auto encoders, recurrent neural networks, and modified/hybrid artificial neural networks. - Includes applications of computer intelligence and decision support systems for the diagnosis and analysis of a variety of neurological disorders - Presents in-depth, technical coverage of computer-aided systems for tumor image classification, Alzheimer's disease detection, dementia detection using deep belief neural networks, and morphological approaches for stroke detection - Covers disease diagnosis for cerebral palsy using auto-encoder approaches, contrast enhancement for performance enhanced diagnosis systems, autism detection using fuzzy logic systems, and autism detection using generative adversarial networks - Written by engineers to help engineers, computer scientists, researchers and clinicians understand the technology and applications of decision support systems for neurological disorders
Publisher: Academic Press
ISBN: 0128222727
Category : Science
Languages : en
Pages : 322
Book Description
Handbook of Decision Support Systems for Neurological Disorders provides readers with complete coverage of advanced computer-aided diagnosis systems for neurological disorders. While computer-aided decision support systems for different medical imaging modalities are available, this is the first book to solely concentrate on decision support systems for neurological disorders. Due to the increase in the prevalence of diseases such as Alzheimer, Parkinson's and Dementia, this book will have significant importance in the medical field. Topics discussed include recent computational approaches, different types of neurological disorders, deep convolution neural networks, generative adversarial networks, auto encoders, recurrent neural networks, and modified/hybrid artificial neural networks. - Includes applications of computer intelligence and decision support systems for the diagnosis and analysis of a variety of neurological disorders - Presents in-depth, technical coverage of computer-aided systems for tumor image classification, Alzheimer's disease detection, dementia detection using deep belief neural networks, and morphological approaches for stroke detection - Covers disease diagnosis for cerebral palsy using auto-encoder approaches, contrast enhancement for performance enhanced diagnosis systems, autism detection using fuzzy logic systems, and autism detection using generative adversarial networks - Written by engineers to help engineers, computer scientists, researchers and clinicians understand the technology and applications of decision support systems for neurological disorders
Diagnosis of Neurological Disorders Based on Deep Learning Techniques
Author: Jyotismita Chaki
Publisher: CRC Press
ISBN: 1000872181
Category : Computers
Languages : en
Pages : 268
Book Description
This book is based on deep learning approaches used for the diagnosis of neurological disorders, including basics of deep learning algorithms using diagrams, data tables, and practical examples, for diagnosis of neurodegenerative and neurodevelopmental disorders. It includes application of feed-forward neural networks, deep generative models, convolutional neural networks, graph convolutional networks, and recurrent neural networks in the field of diagnosis of neurological disorders. Along with this, data preprocessing including scaling, correction, trimming, and normalization is also included. Offers a detailed description of the deep learning approaches used for the diagnosis of neurological disorders. Demonstrates concepts of deep learning algorithms using diagrams, data tables, and examples for the diagnosis of neurodegenerative, neurodevelopmental, and psychiatric disorders. Helps build, train, and deploy different types of deep architectures for diagnosis. Explores data preprocessing techniques involved in diagnosis. Includes real-time case studies and examples. This book is aimed at graduate students and researchers in biomedical imaging and machine learning.
Publisher: CRC Press
ISBN: 1000872181
Category : Computers
Languages : en
Pages : 268
Book Description
This book is based on deep learning approaches used for the diagnosis of neurological disorders, including basics of deep learning algorithms using diagrams, data tables, and practical examples, for diagnosis of neurodegenerative and neurodevelopmental disorders. It includes application of feed-forward neural networks, deep generative models, convolutional neural networks, graph convolutional networks, and recurrent neural networks in the field of diagnosis of neurological disorders. Along with this, data preprocessing including scaling, correction, trimming, and normalization is also included. Offers a detailed description of the deep learning approaches used for the diagnosis of neurological disorders. Demonstrates concepts of deep learning algorithms using diagrams, data tables, and examples for the diagnosis of neurodegenerative, neurodevelopmental, and psychiatric disorders. Helps build, train, and deploy different types of deep architectures for diagnosis. Explores data preprocessing techniques involved in diagnosis. Includes real-time case studies and examples. This book is aimed at graduate students and researchers in biomedical imaging and machine learning.
Artificial Intelligence for Neurological Disorders
Author: Ajith Abraham
Publisher: Academic Press
ISBN: 0323902782
Category : Medical
Languages : en
Pages : 434
Book Description
Artificial Intelligence for Neurological Disorders provides a comprehensive resource of state-of-the-art approaches for AI, big data analytics and machine learning-based neurological research. The book discusses many machine learning techniques to detect neurological diseases at the cellular level, as well as other applications such as image segmentation, classification and image indexing, neural networks and image processing methods. Chapters include AI techniques for the early detection of neurological disease and deep learning applications using brain imaging methods like EEG, MEG, fMRI, fNIRS and PET for seizure prediction or neuromuscular rehabilitation. The goal of this book is to provide readers with broad coverage of these methods to encourage an even wider adoption of AI, Machine Learning and Big Data Analytics for problem-solving and stimulating neurological research and therapy advances. - Discusses various AI and ML methods to apply for neurological research - Explores Deep Learning techniques for brain MRI images - Covers AI techniques for the early detection of neurological diseases and seizure prediction - Examines cognitive therapies using AI and Deep Learning methods
Publisher: Academic Press
ISBN: 0323902782
Category : Medical
Languages : en
Pages : 434
Book Description
Artificial Intelligence for Neurological Disorders provides a comprehensive resource of state-of-the-art approaches for AI, big data analytics and machine learning-based neurological research. The book discusses many machine learning techniques to detect neurological diseases at the cellular level, as well as other applications such as image segmentation, classification and image indexing, neural networks and image processing methods. Chapters include AI techniques for the early detection of neurological disease and deep learning applications using brain imaging methods like EEG, MEG, fMRI, fNIRS and PET for seizure prediction or neuromuscular rehabilitation. The goal of this book is to provide readers with broad coverage of these methods to encourage an even wider adoption of AI, Machine Learning and Big Data Analytics for problem-solving and stimulating neurological research and therapy advances. - Discusses various AI and ML methods to apply for neurological research - Explores Deep Learning techniques for brain MRI images - Covers AI techniques for the early detection of neurological diseases and seizure prediction - Examines cognitive therapies using AI and Deep Learning methods
Intelligent Data Analysis
Author: Deepak Gupta
Publisher: John Wiley & Sons
ISBN: 1119544459
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.
Publisher: John Wiley & Sons
ISBN: 1119544459
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.
Diagnosis of Neurological Disorders Based on Deep Learning Techniques
Author: Jyotismita Chaki
Publisher:
ISBN: 9781003315452
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
This book is based on deep learning approaches used for the diagnosis of neurological disorders, including basics of deep learning algorithms using diagrams, data tables, and practical examples, for diagnosis of neurodegenerative and neurodevelopmental disorders. It includes application of feed-forward neural networks, deep generative models, convolutional neural networks, graph convolutional networks, and recurrent neural networks in the field of diagnosis of neurological disorders. Along with this, data preprocessing including scaling, correction, trimming, and normalization is also included. Offers a detailed description of the deep learning approaches used for the diagnosis of neurological disorders. Demonstrates concepts of deep learning algorithms using diagrams, data tables, and examples for the diagnosis of neurodegenerative, neurodevelopmental, and psychiatric disorders. Helps build, train, and deploy different types of deep architectures for diagnosis. Explores data preprocessing techniques involved in diagnosis. Includes real-time case studies and examples. This book is aimed at graduate students and researchers in biomedical imaging and machine learning.
Publisher:
ISBN: 9781003315452
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
This book is based on deep learning approaches used for the diagnosis of neurological disorders, including basics of deep learning algorithms using diagrams, data tables, and practical examples, for diagnosis of neurodegenerative and neurodevelopmental disorders. It includes application of feed-forward neural networks, deep generative models, convolutional neural networks, graph convolutional networks, and recurrent neural networks in the field of diagnosis of neurological disorders. Along with this, data preprocessing including scaling, correction, trimming, and normalization is also included. Offers a detailed description of the deep learning approaches used for the diagnosis of neurological disorders. Demonstrates concepts of deep learning algorithms using diagrams, data tables, and examples for the diagnosis of neurodegenerative, neurodevelopmental, and psychiatric disorders. Helps build, train, and deploy different types of deep architectures for diagnosis. Explores data preprocessing techniques involved in diagnosis. Includes real-time case studies and examples. This book is aimed at graduate students and researchers in biomedical imaging and machine learning.
Machine Learning
Author: Andrea Mechelli
Publisher: Academic Press
ISBN: 0128157402
Category : Medical
Languages : en
Pages : 412
Book Description
Machine Learning is an area of artificial intelligence involving the development of algorithms to discover trends and patterns in existing data; this information can then be used to make predictions on new data. A growing number of researchers and clinicians are using machine learning methods to develop and validate tools for assisting the diagnosis and treatment of patients with brain disorders. Machine Learning: Methods and Applications to Brain Disorders provides an up-to-date overview of how these methods can be applied to brain disorders, including both psychiatric and neurological disease. This book is written for a non-technical audience, such as neuroscientists, psychologists, psychiatrists, neurologists and health care practitioners. - Provides a non-technical introduction to machine learning and applications to brain disorders - Includes a detailed description of the most commonly used machine learning algorithms as well as some novel and promising approaches - Covers the main methodological challenges in the application of machine learning to brain disorders - Provides a step-by-step tutorial for implementing a machine learning pipeline to neuroimaging data in Python
Publisher: Academic Press
ISBN: 0128157402
Category : Medical
Languages : en
Pages : 412
Book Description
Machine Learning is an area of artificial intelligence involving the development of algorithms to discover trends and patterns in existing data; this information can then be used to make predictions on new data. A growing number of researchers and clinicians are using machine learning methods to develop and validate tools for assisting the diagnosis and treatment of patients with brain disorders. Machine Learning: Methods and Applications to Brain Disorders provides an up-to-date overview of how these methods can be applied to brain disorders, including both psychiatric and neurological disease. This book is written for a non-technical audience, such as neuroscientists, psychologists, psychiatrists, neurologists and health care practitioners. - Provides a non-technical introduction to machine learning and applications to brain disorders - Includes a detailed description of the most commonly used machine learning algorithms as well as some novel and promising approaches - Covers the main methodological challenges in the application of machine learning to brain disorders - Provides a step-by-step tutorial for implementing a machine learning pipeline to neuroimaging data in Python
Deep Learning Approaches to Cloud Security
Author: Pramod Singh Rathore
Publisher: John Wiley & Sons
ISBN: 1119760526
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
DEEP LEARNING APPROACHES TO CLOUD SECURITY Covering one of the most important subjects to our society today, cloud security, this editorial team delves into solutions taken from evolving deep learning approaches, solutions allowing computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts. Deep learning is the fastest growing field in computer science. Deep learning algorithms and techniques are found to be useful in different areas like automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delay in children. However, applying deep learning techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. This book provides state of the art approaches of deep learning in these areas, including areas of detection and prediction, as well as future framework development, building service systems and analytical aspects. In all these topics, deep learning approaches, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used. This book is intended for dealing with modeling and performance prediction of the efficient cloud security systems, thereby bringing a newer dimension to this rapidly evolving field. This groundbreaking new volume presents these topics and trends of deep learning, bridging the research gap, and presenting solutions to the challenges facing the engineer or scientist every day in this area. Whether for the veteran engineer or the student, this is a must-have for any library. Deep Learning Approaches to Cloud Security: Is the first volume of its kind to go in-depth on the newest trends and innovations in cloud security through the use of deep learning approaches Covers these important new innovations, such as AI, data mining, and other evolving computing technologies in relation to cloud security Is a useful reference for the veteran computer scientist or engineer working in this area or an engineer new to the area, or a student in this area Discusses not just the practical applications of these technologies, but also the broader concepts and theory behind how these deep learning tools are vital not just to cloud security, but society as a whole Audience: Computer scientists, scientists and engineers working with information technology, design, network security, and manufacturing, researchers in computers, electronics, and electrical and network security, integrated domain, and data analytics, and students in these areas
Publisher: John Wiley & Sons
ISBN: 1119760526
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
DEEP LEARNING APPROACHES TO CLOUD SECURITY Covering one of the most important subjects to our society today, cloud security, this editorial team delves into solutions taken from evolving deep learning approaches, solutions allowing computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts. Deep learning is the fastest growing field in computer science. Deep learning algorithms and techniques are found to be useful in different areas like automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delay in children. However, applying deep learning techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. This book provides state of the art approaches of deep learning in these areas, including areas of detection and prediction, as well as future framework development, building service systems and analytical aspects. In all these topics, deep learning approaches, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used. This book is intended for dealing with modeling and performance prediction of the efficient cloud security systems, thereby bringing a newer dimension to this rapidly evolving field. This groundbreaking new volume presents these topics and trends of deep learning, bridging the research gap, and presenting solutions to the challenges facing the engineer or scientist every day in this area. Whether for the veteran engineer or the student, this is a must-have for any library. Deep Learning Approaches to Cloud Security: Is the first volume of its kind to go in-depth on the newest trends and innovations in cloud security through the use of deep learning approaches Covers these important new innovations, such as AI, data mining, and other evolving computing technologies in relation to cloud security Is a useful reference for the veteran computer scientist or engineer working in this area or an engineer new to the area, or a student in this area Discusses not just the practical applications of these technologies, but also the broader concepts and theory behind how these deep learning tools are vital not just to cloud security, but society as a whole Audience: Computer scientists, scientists and engineers working with information technology, design, network security, and manufacturing, researchers in computers, electronics, and electrical and network security, integrated domain, and data analytics, and students in these areas
Handbook of Deep Learning in Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128230479
Category : Science
Languages : en
Pages : 322
Book Description
Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Publisher: Academic Press
ISBN: 0128230479
Category : Science
Languages : en
Pages : 322
Book Description
Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence
Author: Anitha S. Pillai
Publisher: Academic Press
ISBN: 0323886264
Category : Science
Languages : en
Pages : 356
Book Description
Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence focuses on how the neurosciences can benefit from advances in AI, especially in areas such as medical image analysis for the improved diagnosis of Alzheimer's disease, early detection of acute neurologic events, prediction of stroke, medical image segmentation for quantitative evaluation of neuroanatomy and vasculature, diagnosis of Alzheimer's Disease, autism spectrum disorder, and other key neurological disorders. Chapters also focus on how AI can help in predicting stroke recovery, and the use of Machine Learning and AI in personalizing stroke rehabilitation therapy. Other sections delve into Epilepsy and the use of Machine Learning techniques to detect epileptogenic lesions on MRIs and how to understand neural networks. - Provides readers with an understanding on the key applications of artificial intelligence and machine learning in the diagnosis and treatment of the most important neurological disorders - Integrates recent advancements of artificial intelligence and machine learning to the evaluation of large amounts of clinical data for the early detection of disorders such as Alzheimer's Disease, autism spectrum disorder, Multiple Sclerosis, headache disorder, Epilepsy, and stroke - Provides readers with illustrative examples of how artificial intelligence can be applied to outcome prediction, neurorehabilitation and clinical exams, including a wide range of case studies in predicting and classifying neurological disorders
Publisher: Academic Press
ISBN: 0323886264
Category : Science
Languages : en
Pages : 356
Book Description
Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence focuses on how the neurosciences can benefit from advances in AI, especially in areas such as medical image analysis for the improved diagnosis of Alzheimer's disease, early detection of acute neurologic events, prediction of stroke, medical image segmentation for quantitative evaluation of neuroanatomy and vasculature, diagnosis of Alzheimer's Disease, autism spectrum disorder, and other key neurological disorders. Chapters also focus on how AI can help in predicting stroke recovery, and the use of Machine Learning and AI in personalizing stroke rehabilitation therapy. Other sections delve into Epilepsy and the use of Machine Learning techniques to detect epileptogenic lesions on MRIs and how to understand neural networks. - Provides readers with an understanding on the key applications of artificial intelligence and machine learning in the diagnosis and treatment of the most important neurological disorders - Integrates recent advancements of artificial intelligence and machine learning to the evaluation of large amounts of clinical data for the early detection of disorders such as Alzheimer's Disease, autism spectrum disorder, Multiple Sclerosis, headache disorder, Epilepsy, and stroke - Provides readers with illustrative examples of how artificial intelligence can be applied to outcome prediction, neurorehabilitation and clinical exams, including a wide range of case studies in predicting and classifying neurological disorders