Development of Molecular Catalysts to Bridge the Gap Between Heterogeneous and Homogeneous Catalysts PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Development of Molecular Catalysts to Bridge the Gap Between Heterogeneous and Homogeneous Catalysts PDF full book. Access full book title Development of Molecular Catalysts to Bridge the Gap Between Heterogeneous and Homogeneous Catalysts by Rong Ye. Download full books in PDF and EPUB format.

Development of Molecular Catalysts to Bridge the Gap Between Heterogeneous and Homogeneous Catalysts

Development of Molecular Catalysts to Bridge the Gap Between Heterogeneous and Homogeneous Catalysts PDF Author: Rong Ye
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Book Description
Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g. [pi]-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g. oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl2) or reduced (e.g., with H2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. While localized surface plasmon resonance (LSPR) provides a powerful platform for nanoparticle catalysis, our studies suggest that in some cases interband transitions should be considered as an alternative mechanism of light-driven nanoparticle catalysis. The benefits already demonstrated by plasmonic nanostructures as catalysts provided the impetus for examining complementary activation modes based on the metal nanoparticle itself. Leveraging these transitions has the potential to provide a means to highly active catalysis modes that would otherwise be challenging to access. For example, for the preparation of highly active metal catalysts on a subnanosized scale is challenging, thus limiting their exploitation and study in catalysis. Our work suggests a novel and facile strategy for the formation of highly active gold nanocluster catalysts by light illumination of the interband transitions in the presence of the appropriate substrate.

Development of Molecular Catalysts to Bridge the Gap Between Heterogeneous and Homogeneous Catalysts

Development of Molecular Catalysts to Bridge the Gap Between Heterogeneous and Homogeneous Catalysts PDF Author: Rong Ye
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Book Description
Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g. [pi]-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g. oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl2) or reduced (e.g., with H2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. While localized surface plasmon resonance (LSPR) provides a powerful platform for nanoparticle catalysis, our studies suggest that in some cases interband transitions should be considered as an alternative mechanism of light-driven nanoparticle catalysis. The benefits already demonstrated by plasmonic nanostructures as catalysts provided the impetus for examining complementary activation modes based on the metal nanoparticle itself. Leveraging these transitions has the potential to provide a means to highly active catalysis modes that would otherwise be challenging to access. For example, for the preparation of highly active metal catalysts on a subnanosized scale is challenging, thus limiting their exploitation and study in catalysis. Our work suggests a novel and facile strategy for the formation of highly active gold nanocluster catalysts by light illumination of the interband transitions in the presence of the appropriate substrate.

Heterogeneous Catalysts

Heterogeneous Catalysts PDF Author: Wey Yang Teoh
Publisher: John Wiley & Sons
ISBN: 352781356X
Category : Technology & Engineering
Languages : en
Pages : 768

Book Description
Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.

Graphite-conjugated Catalysts

Graphite-conjugated Catalysts PDF Author: Seokjoon Oh
Publisher:
ISBN:
Category :
Languages : en
Pages : 156

Book Description
This interconversion occurs via complex multistep, multielectron reactions, which can be carried out by either metallic heterogeneous or molecular homogeneous electrocatalysts. Metallic heterogeneous catalysts have a continuum of electronic states that distribute the redox burden of multielectron reactions, allowing for efficient catalysis. However, heterogeneous catalysts display a variety of active sites and local electronic structures, and are difficult to fine-tune at a molecular level. On the other hand, homogeneous catalysts allow a great degree of synthetic control over the catalytic active site. Moreover, the relative ease in spectroscopic characterization allows a mechanistic understanding of molecular catalysis at a level that is unattainable for heterogeneous catalysis. To bridge the advantages of both types of catalysts, we have developed a surface functionalization strategy for conjugating molecularly well-defined active sites to graphitic carbon surfaces. First, I will discuss the preparation and characterization of two new types of conjugating N-heterocyclic linkages to graphitic carbon surfaces. This work presents a general method for characterizing modified carbon surfaces with molecular-level structural detail. Then, I will present the electrocatalytic carbon dioxide reduction activity of a graphite-conjugated rhenium catalyst, and compare its catalytic behavior to that of a molecular analog. Electrochemical and spectroscopic data show that graphite-conjugated catalysts do not behave identically to their molecular analogs, but rather show properties similar to that of metallic heterogeneous catalysts, providing a unique bridge between the worlds of heterogeneous and homogeneous catalysis. Finally, in the appendix, I will present a chapter on the stability of graphite-conjugated linkages under electrochemical polarization, followed by a chapter on catalyzing the reduction of molecular pyridinium species using a graphite-conjugated rhodium catalyst.

Molecular Catalysts

Molecular Catalysts PDF Author: Lutz H. Gade
Publisher: John Wiley & Sons
ISBN: 3527673296
Category : Technology & Engineering
Languages : en
Pages : 632

Book Description
Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers will gain a deeper understanding of the catalytic transformations, allowing them to adapt the knowledge to their own investigations. With its ideal combination of fundamental and applied research, this is an essential reference for researchers and graduate students both in academic institutions and in the chemical industry. With a foreword by Nobel laureate Roald Hoffmann.

Bridging Heterogeneous and Homogeneous Catalysis

Bridging Heterogeneous and Homogeneous Catalysis PDF Author: Can Li
Publisher: John Wiley & Sons
ISBN: 3527675922
Category : Technology & Engineering
Languages : en
Pages : 860

Book Description
There are two main disciplines in catalysis research -- homogeneous and heterogeneous catalysis. This is due to the fact that the catalyst is either in the same phase (homogeneous catalysis) as the reaction being catalyzed or in a different phase (heterogeneous catalysis). Over the past decade, various approaches have been implemented to combine the advantages of homogeneous catalysis (efficiency, selectivity) with those of heterogeneous catalysis (stability, recovery) by the heterogenization of homogeneous catalysts or by carrying out homogeneous reactions under heterogeneous conditions. This unique handbook fills the gap in the market for an up-to-date work that links both homogeneous catalysis applied to organic reactions and catalytic reactions on surfaces of heterogeneous catalysts. As such, it highlights structural analogies and shows mechanistic parallels between the two, while additionally presenting kinetic analysis methods and models that either work for both homogeneous and heterogeneous catalysis. Chapters cover asymmetric, emulsion, phase-transfer, supported homogeneous, and organocatalysis, as well as in nanoreactors and for specific applications, catalytic reactions in ionic liquids, fluorous and supercritical solvents and in water. Finally, the text includes computational methods for investigating structure-reactivity relations. With its wealth of information, this invaluable reference provides academic and industrial chemists with novel concepts for innovative catalysis research.

Supported Catalysts and Their Applications

Supported Catalysts and Their Applications PDF Author: David C Sherrington
Publisher: Royal Society of Chemistry
ISBN: 1847551963
Category : Science
Languages : en
Pages : 282

Book Description
The need to improve both the efficiency and environmental acceptability of industrial processes is driving the development of heterogeneous catalysts across the chemical industry, including commodity, specialty and fine chemicals and in pharmaceuticals and agrochemicals. Drawing on international research, Supported Catalysts and their Applications discusses aspects of the design, synthesis and application of solid supported reagents and catalysts, including supported reagents for multi-step organic synthesis; selectivity in oxidation catalysis; mesoporous molecular sieve catalysts; and the use of Zeolite Beta in organic reactions. In addition, the two discrete areas of heterogeneous catalysis (inorganic oxide materials and polymer-based catalysts) that were developing in parallel are now shown to be converging, which will be of great benefit to the whole field. Providing a snapshot of the state-of-the-art in this fast-moving field, this book will be welcomed by industrialists and researchers, particularly in the agrochemicals and pharmaceuticals industries.

Principles of Catalyst Development

Principles of Catalyst Development PDF Author: James T. Richardson
Publisher: Springer
ISBN: 1489937250
Category : Science
Languages : en
Pages : 297

Book Description
Successful industrial heterogeneous catalysts fulfill several key require ments: in addition to high catalytic activity for the desired reaction, with high selectivity where appropriate, they also have an acceptable commercial life and are rugged enough for transportation and charging into plant reactors. Additional requirements include the need to come online smoothly in a short time and reproducible manufacturing procedures that involve convenient processes at acceptable cost. The development of heterogeneous catalysts that meet these (often mutually exclusive) demands is far from straightforward, and in addition much of the actual manufacturing tech nology is kept secret for commercial reasons-thus there is no modern text that deals with the whole of this important subject. Principles of Catalyst Development, which deals comprehensively with the design, development, and manufacture of practical heterogeneous catalysts, is therefore especially valuable in meeting the long-standing needs of both industrialists and academics. As one who has worked extensively on a variety of catalyst development problems in both industry and academia, James T. Richardson is well placed to write an authoritative book covering both the theory and the practice of catalyst development. Much of the material contained in this book had its origin in a series of widely acclaimed lectures, attended mainly by industrial researchers, given over many years in the United States and Europe. All those in industry who work with catalysts, both beginners and those of considerable experience, should find this volume an essential guide.

Heterogeneous Catalysts for Clean Technology

Heterogeneous Catalysts for Clean Technology PDF Author: Karen Wilson
Publisher: John Wiley & Sons
ISBN: 3527659005
Category : Science
Languages : en
Pages : 466

Book Description
Reactive, but not a reactant. Heterogeneous catalysts play an unseen role in many of today's processes and products. With the increasing emphasis on sustainability in both products and processes, this handbook is the first to combine the hot topics of heterogeneous catalysis and clean technology. It focuses on the development of heterogeneous catalysts for use in clean chemical synthesis, dealing with how modern spectroscopic techniques can aid the design of catalysts for use in liquid phase reactions, their application in industrially important chemistries - including selective oxidation, hydrogenation, solid acid- and base-catalyzed processes - as well as the role of process intensification and use of renewable resources in improving the sustainability of chemical processes. With its emphasis on applications, this book is of high interest to those working in the industry.

Heterogenized Homogeneous Catalysts for Fine Chemicals Production

Heterogenized Homogeneous Catalysts for Fine Chemicals Production PDF Author: Pierluigi Barbaro
Publisher: Springer Science & Business Media
ISBN: 9048136962
Category : Science
Languages : en
Pages : 470

Book Description
Table 1 E factors (tonnes of waste generated per tonne of product manufactured [7] Industry segment Annual product tonnage E factor 6 8 Oil refining 10 –10 Approx. 0. 1 4 6 Bulk chemicals 10 –10

Supramolecular Catalysis

Supramolecular Catalysis PDF Author: Piet W.N.M. van Leeuwen
Publisher: John Wiley & Sons
ISBN: 3527349022
Category : Technology & Engineering
Languages : en
Pages : 708

Book Description
Supramolecular Catalysis Provides a timely and detailed overview of the expanding field of supramolecular catalysis The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. Edited by two world-renowned researchers, Supramolecular Catalysis: New Directions and Developments summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments Highlights current research trends and discusses the future of supramolecular catalysis Includes full references and numerous figures, tables, and color illustrations Supramolecular Catalysis: New Directions and Developments is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.