Development of Asset Fault Signatures for Prognostic and Health Management in the Nuclear Industry

Development of Asset Fault Signatures for Prognostic and Health Management in the Nuclear Industry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute's Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: Diagnostic Advisor, Asset Fault Signature (AFS) Database, Remaining Useful Life Advisor, and Remaining Useful Life Database. This paper focuses on development of asset fault signatures to assess the health status of generator step-up generators and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. At the most basic level, fault signatures are comprised of an asset type, a fault type, and a set of one or more fault features (symptoms) that are indicative of the specified fault. The AFS Database is populated with asset fault signatures via a content development exercise that is based on the results of intensive technical research and on the knowledge and experience of technical experts. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

Prognostic and Health Management of Active Assets in Nuclear Power Plants

Prognostic and Health Management of Active Assets in Nuclear Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Book Description
This study presents the development of diagnostic and prognostic capabilities for active assets in nuclear power plants (NPPs). The research was performed under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program. Idaho National Laboratory researched, developed, implemented, and demonstrated diagnostic and prognostic models for generator step-up transformers (GSUs). The Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software developed by the Electric Power Research Institute was used to perform diagnosis and prognosis. As part of the research activity, Idaho National Laboratory implemented 22 GSU diagnostic models in the Asset Fault Signature Database and two wellestablished GSU prognostic models for the paper winding insulation in the Remaining Useful Life Database of the FW-PHM Suite. The implemented models along with a simulated fault data stream were used to evaluate the diagnostic and prognostic capabilities of the FW-PHM Suite. Knowledge of the operating condition of plant asset gained from diagnosis and prognosis is critical for the safe, productive, and economical long-term operation of the current fleet of NPPs. This research addresses some of the gaps in the current state of technology development and enables effective application of diagnostics and prognostics to nuclear plant assets.

Online Monitoring of Plant Assets in the Nuclear Industry

Online Monitoring of Plant Assets in the Nuclear Industry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Today's online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy's Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute's (EPRI's) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI's Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

Multi-Sensor Information Fusion

Multi-Sensor Information Fusion PDF Author: Xue-Bo Jin
Publisher: MDPI
ISBN: 3039283022
Category : Technology & Engineering
Languages : en
Pages : 602

Book Description
This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.

Implementation of Remaining Useful Lifetime Transformer Models in the Fleet-Wide Prognostic and Health Management Suite

Implementation of Remaining Useful Lifetime Transformer Models in the Fleet-Wide Prognostic and Health Management Suite PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Book Description
Research and development efforts are required to address aging and reliability concerns of the existing fleet of nuclear power plants. As most plants continue to operate beyond the license life (i.e., towards 60 or 80 years), plant components are more likely to incur age-related degradation mechanisms. To assess and manage the health of aging plant assets across the nuclear industry, the Electric Power Research Institute has developed a web-based Fleet-Wide Prognostic and Health Management (FW-PHM) Suite for diagnosis and prognosis. FW-PHM is a set of web-based diagnostic and prognostic tools and databases, comprised of the Diagnostic Advisor, the Asset Fault Signature Database, the Remaining Useful Life Advisor, and the Remaining Useful Life Database, that serves as an integrated health monitoring architecture. The main focus of this paper is the implementation of prognostic models for generator step-up transformers in the FW-PHM Suite. One prognostic model discussed is based on the functional relationship between degree of polymerization, (the most commonly used metrics to assess the health of the winding insulation in a transformer) and furfural concentration in the insulating oil. The other model is based on thermal-induced degradation of the transformer insulation. By utilizing transformer loading information, established thermal models are used to estimate the hot spot temperature inside the transformer winding. Both models are implemented in the Remaining Useful Life Database of the FW-PHM Suite. The Remaining Useful Life Advisor utilizes the implemented prognostic models to estimate the remaining useful life of the paper winding insulation in the transformer based on actual oil testing and operational data.

Diagnostic and Prognostic Models for Generator Step-Up Transformers

Diagnostic and Prognostic Models for Generator Step-Up Transformers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In 2014, the online monitoring (OLM) of active components project under the Light Water Reactor Sustainability program at Idaho National Laboratory (INL) focused on diagnostic and prognostic capabilities for generator step-up transformers. INL worked with subject matter experts from the Electric Power Research Institute (EPRI) to augment and revise the GSU fault signatures previously implemented in the Electric Power Research Institute's (EPRI's) Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. Two prognostic models were identified and implemented for GSUs in the FW-PHM Suite software. INL and EPRI demonstrated the use of prognostic capabilities for GSUs. The complete set of fault signatures developed for GSUs in the Asset Fault Signature Database of the FW-PHM Suite for GSUs is presented in this report. Two prognostic models are described for paper insulation: the Chendong model for degree of polymerization, and an IEEE model that uses a loading profile to calculates life consumption based on hot spot winding temperatures. Both models are life consumption models, which are examples of type II prognostic models. Use of the models in the FW-PHM Suite was successfully demonstrated at the 2014 August Utility Working Group Meeting, Idaho Falls, Idaho, to representatives from different utilities, EPRI, and the Halden Research Project.

System Health Management

System Health Management PDF Author: Stephen B. Johnson
Publisher: John Wiley & Sons
ISBN: 1119998735
Category : Technology & Engineering
Languages : en
Pages : 659

Book Description
System Health Management: with Aerospace Applications provides the first complete reference text for System Health Management (SHM), the set of technologies and processes used to improve system dependability. Edited by a team of engineers and consultants with SHM design, development, and research experience from NASA, industry, and academia, each heading up sections in their own areas of expertise and co-coordinating contributions from leading experts, the book collates together in one text the state-of-the-art in SHM research, technology, and applications. It has been written primarily as a reference text for practitioners, for those in related disciplines, and for graduate students in aerospace or systems engineering. There are many technologies involved in SHM and no single person can be an expert in all aspects of the discipline.System Health Management: with Aerospace Applications provides an introduction to the major technologies, issues, and references in these disparate but related SHM areas. Since SHM has evolved most rapidly in aerospace, the various applications described in this book are taken primarily from the aerospace industry. However, the theories, techniques, and technologies discussed are applicable to many engineering disciplines and application areas. Readers will find sections on the basic theories and concepts of SHM, how it is applied in the system life cycle (architecture, design, verification and validation, etc.), the most important methods used (reliability, quality assurance, diagnostics, prognostics, etc.), and how SHM is applied in operations (commercial aircraft, launch operations, logistics, etc.), to subsystems (electrical power, structures, flight controls, etc.) and to system applications (robotic spacecraft, tactical missiles, rotorcraft, etc.).

Prognostics and Health Management of Engineering Systems

Prognostics and Health Management of Engineering Systems PDF Author: Nam-Ho Kim
Publisher: Springer
ISBN: 3319447424
Category : Technology & Engineering
Languages : en
Pages : 355

Book Description
This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.Among the many topics discussed in-depth are:• Prognostics tutorials using least-squares• Bayesian inference and parameter estimation• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter• Data-driven prognostics algorithms including Gaussian process regression and neural network• Comparison of different prognostics algorithms divThe authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.

NUREG/CR.

NUREG/CR. PDF Author: U.S. Nuclear Regulatory Commission
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 48

Book Description


Diagnostics and Prognostics of Engineering Systems: Methods and Techniques

Diagnostics and Prognostics of Engineering Systems: Methods and Techniques PDF Author: Kadry, Seifedine
Publisher: IGI Global
ISBN: 146662096X
Category : Technology & Engineering
Languages : en
Pages : 461

Book Description
Industrial Prognostics predicts an industrial system’s lifespan using probability measurements to determine the way a machine operates. Prognostics are essential in determining being able to predict and stop failures before they occur. Therefore the development of dependable prognostic procedures for engineering systems is important to increase the system’s performance and reliability. Diagnostics and Prognostics of Engineering Systems: Methods and Techniques provides widespread coverage and discussions on the methods and techniques of diagnosis and prognosis systems. Including practical examples to display the method’s effectiveness in real-world applications as well as the latest trends and research, this reference source aims to introduce fundamental theory and practice for system diagnosis and prognosis.