Development Methodologies for Big Data Analytics Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Development Methodologies for Big Data Analytics Systems PDF full book. Access full book title Development Methodologies for Big Data Analytics Systems by Manuel Mora. Download full books in PDF and EPUB format.

Development Methodologies for Big Data Analytics Systems

Development Methodologies for Big Data Analytics Systems PDF Author: Manuel Mora
Publisher: Springer Nature
ISBN: 3031409566
Category : Technology & Engineering
Languages : en
Pages : 289

Book Description
This book presents research in big data analytics (BDA) for business of all sizes. The authors analyze problems presented in the application of BDA in some businesses through the study of development methodologies based on the three approaches – 1) plan-driven, 2) agile and 3) hybrid lightweight. The authors first describe BDA systems and how they emerged with the convergence of Statistics, Computer Science, and Business Intelligent Analytics with the practical aim to provide concepts, models, methods and tools required for exploiting the wide variety, volume, and velocity of available business internal and external data - i.e. Big Data – and provide decision-making value to decision-makers. The book presents high-quality conceptual and empirical research-oriented chapters on plan-driven, agile, and hybrid lightweight development methodologies and relevant supporting topics for BDA systems suitable to be used for large-, medium-, and small-sized business organizations.

Development Methodologies for Big Data Analytics Systems

Development Methodologies for Big Data Analytics Systems PDF Author: Manuel Mora
Publisher: Springer Nature
ISBN: 3031409566
Category : Technology & Engineering
Languages : en
Pages : 289

Book Description
This book presents research in big data analytics (BDA) for business of all sizes. The authors analyze problems presented in the application of BDA in some businesses through the study of development methodologies based on the three approaches – 1) plan-driven, 2) agile and 3) hybrid lightweight. The authors first describe BDA systems and how they emerged with the convergence of Statistics, Computer Science, and Business Intelligent Analytics with the practical aim to provide concepts, models, methods and tools required for exploiting the wide variety, volume, and velocity of available business internal and external data - i.e. Big Data – and provide decision-making value to decision-makers. The book presents high-quality conceptual and empirical research-oriented chapters on plan-driven, agile, and hybrid lightweight development methodologies and relevant supporting topics for BDA systems suitable to be used for large-, medium-, and small-sized business organizations.

Research Anthology on Big Data Analytics, Architectures, and Applications

Research Anthology on Big Data Analytics, Architectures, and Applications PDF Author: Information Resources Management Association
Publisher: Engineering Science Reference
ISBN: 9781668436622
Category : Big data
Languages : en
Pages : 0

Book Description
Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.

Big Data: Concepts, Methodologies, Tools, and Applications

Big Data: Concepts, Methodologies, Tools, and Applications PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1466698411
Category : Computers
Languages : en
Pages : 2523

Book Description
The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. Big Data: Concepts, Methodologies, Tools, and Applications is a multi-volume compendium of research-based perspectives and solutions within the realm of large-scale and complex data sets. Taking a multidisciplinary approach, this publication presents exhaustive coverage of crucial topics in the field of big data including diverse applications, storage solutions, analysis techniques, and methods for searching and transferring large data sets, in addition to security issues. Emphasizing essential research in the field of data science, this publication is an ideal reference source for data analysts, IT professionals, researchers, and academics.

Big Data

Big Data PDF Author:
Publisher:
ISBN:
Category : Competition, International
Languages : en
Pages : 156

Book Description


Big Data Analytics: Systems, Algorithms, Applications

Big Data Analytics: Systems, Algorithms, Applications PDF Author: C.S.R. Prabhu
Publisher: Springer Nature
ISBN: 9811500940
Category : Computers
Languages : en
Pages : 422

Book Description
This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.

Handbook of Big Data Analytics

Handbook of Big Data Analytics PDF Author: Vadlamani Ravi
Publisher: IET
ISBN: 1839530642
Category : Computers
Languages : en
Pages : 390

Book Description
This comprehensive edited 2-volume handbook provides a unique platform for researchers, engineers, developers, educators and advanced students in the field of Big Data analytics. The first volume presents methodologies that support Big Data analytics, while the second volume offers a wide range of Big Data analytics applications.

Marketing and Big Data Analytics in Tourism and Events

Marketing and Big Data Analytics in Tourism and Events PDF Author: Hashem, Tareq Nael
Publisher: IGI Global
ISBN:
Category : Business & Economics
Languages : en
Pages : 313

Book Description
In the digital age, the tourism industry faces the challenge of effectively marketing destinations amidst a sea of competition and information. Marketing Information Systems (MkIS) and Big Data Analytics (BDA) hold immense potential. Yet, many organizations need help harnessing their power efficiently. Marketing and Big Data Analytics in Tourism and Events offer a comprehensive solution, deep-dive into integrating MkIS and BDA as a strategic approach to revolutionizing tourism marketing. The book aims to bridge the gap between theory and practice by examining the complexities and nuances of MkIS and BDA in promoting tourist destinations. It provides actionable insights and practical strategies for leveraging these technologies effectively. Readers will understand how AI-driven MkIS and BDA can enhance marketing campaigns, improve customer experiences, and drive business growth in the tourism sector.

Handbook of Research on Pattern Engineering System Development for Big Data Analytics

Handbook of Research on Pattern Engineering System Development for Big Data Analytics PDF Author: Tiwari, Vivek
Publisher: IGI Global
ISBN: 1522538712
Category : Computers
Languages : en
Pages : 425

Book Description
Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. The Handbook of Research on Pattern Engineering System Development for Big Data Analytics is a critical scholarly resource that examines the incorporation of pattern management in business technologies as well as decision making and prediction process through the use of data management and analysis. Featuring coverage on a broad range of topics such as business intelligence, feature extraction, and data collection, this publication is geared towards professionals, academicians, practitioners, and researchers seeking current research on the development of pattern management systems for business applications.

Applied Big Data Analytics in Operations Management

Applied Big Data Analytics in Operations Management PDF Author: Kumar, Manish
Publisher: IGI Global
ISBN: 1522508872
Category : Business & Economics
Languages : en
Pages : 270

Book Description
Operations management is a tool by which companies can effectively meet customers’ needs using the least amount of resources necessary. With the emergence of sensors and smart metering, big data is becoming an intrinsic part of modern operations management. Applied Big Data Analytics in Operations Management enumerates the challenges and creative solutions and tools to apply when using big data in operations management. Outlining revolutionary concepts and applications that help businesses predict customer behavior along with applications of artificial neural networks, predictive analytics, and opinion mining on business management, this comprehensive publication is ideal for IT professionals, software engineers, business professionals, managers, and students of management.

Agile Data Science 2.0

Agile Data Science 2.0 PDF Author: Russell Jurney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491960086
Category : Computers
Languages : en
Pages : 351

Book Description
Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track